
Implication and Axiomatization of Functional
Constraints on Patterns with an Application to

the RDF Data Model

Jelle Hellings1, Marc Gyssens1, Jan Paredaens2, and Yuqing Wu3?

1 Hasselt University and Transnational University of Limburg
{jelle.hellings,marc.gyssens}@uhasselt.be

2 University of Antwerp
jan.paredaens@uantwerpen.be

3 Indiana University
yuqwu@cs.indiana.edu

Abstract. Akhtar et al. introduced equality-generating constraints and
functional constraints as an initial step towards dependency-like integrity
constraints for RDF data [1]. Here, we focus on functional constraints.
The usefulness of functional constraints is not limited to the RDF data
model. Therefore, we study the functional constraints in the more gen-
eral setting of relations with arbitrary arity. We show that a chase algo-
rithm for functional constraints can be normalized to a more specialized
symmetry-preserving chase algorithm. This symmetry-preserving chase
algorithm is subsequently used to construct a sound and complete ax-
iomatization for the functional constraints. This axiomatization is in par-
ticular applicable in the RDF data model, solving a major open problem
of Akhtar et al.

Keywords: functional constraints, chase algorithm, axiomatization

1 Introduction

Usually, data is subject to integrity constraints implied by the semantics of the
data. Formalizing these constraints can help reasoning over the data and help
identifying inconsistencies in the data. As such, formal constraints play a major
role in database management systems that automatically maintain integrity of
the data and optimize query evaluation.

For the relational data model, many types of constraints have been inves-
tigated. Among the simplest constraints are the functional dependencies [2].
Functional dependencies play an important role in the well-known Boyce-Codd
normal form [3] and in relational schema normalization in general. Besides the
functional dependencies, many other dependencies have been investigated (see,

? Yuqing Wu carried out part of her work during a sabbatical visit to Hasselt University
with a Senior Visiting Postdoctoral Fellowship of the Research Foundation Flanders
(FWO).

e.g., [4, 5]). One of these, the equality-generating dependencies [4], is a natural
generalization of the functional dependencies.

For the RDF and XML graph data models, a large body of work on the
integrity of data focuses on the schema of the data. Examples are RDF Schema
and, for the XML data model, DTDs and XSDs. The usage of dependency-like
constraints is less common for these data-models although initial steps have been
made (e.g. [1, 6–13]).

An example of dependency-like constraints for the RDF data model are the
equality-generating constraints and the functional constraints of Akhtar et al. [1,
14]. Equality-generating constraints specify patterns that can occur in RDF data,
together with equalities that should hold on these patterns. As such, the equality-
generating constraints are similar to the equality-generating dependencies of
Beeri and Vardi [4], to the equality-generating fragment of the implication de-
pendencies of Fagin [15], and to the full equality-generating dependencies of Wij-
sen [16]. In these dependencies, the generality of patterns, which allow constants
and are untyped, is only matched by the full equality-generating dependencies
of Wijsen.

Functional constraints are a generalization of functional dependencies on
ternary RDF relations and have the form

(P ,L→ R),

where P specifies a pattern in the RDF data and L and R are sets of variables
occurring in this pattern. Their semantics is comparable to that of the functional
dependencies: if two parts of the RDF data match the pattern and are equal on
L, then they must also be equal on R.

Example 1. Consider the family tree visualized in Figure 1.

Alexis

Alexia

Alexander

fatherOf

motherOf

Alexandra

fatherOf

motherOf

Fig. 1. Simplified visualization of an RDF representation of a small family tree.

On this data, the constraint “a child only has one biological father and
mother” holds. This constraint can be expressed by the functional constraints
({($p, fatherOf, $c)}, $c→ $p) and ({($p,motherOf, $c)}, $c→ $p). The stronger
constraint “children have only one biological parent”, which can be expressed by
({($p, $t, $c)}, $c→ $p), does not hold on this data.

The functional constraints are subsumed by the equality-generating con-
straints of Akhtar et al. [1]. Although we shall sometimes refer to equality-
generating constraints to describe the general context of this research, the focus

here is on functional constraints. We shall consider functional constraints on re-
lations of arbitrary arity, as the restriction to ternary patterns, as used in the
RDF data model, is non-essential.

Functional constraints allow the expression of several types of integrity con-
straints; these include traditional functional dependencies [2], context-dependent
functional dependencies, and constraints on the structure of graphs (described
by an edge relation), as illustrated by the following examples.

Example 2. Consider the following relation schema for storing personal informa-
tion: PI(name, ssn, address,number, city, postal-code, country), where ssn is the
social security number. It is natural to add the functional dependency ssn →
name to this scheme. We can express this functional dependency by the func-
tional constraint ({($na, $s, $a, $nu, $ci , $p, $co)}, $s→ $na).

Many integrity constraints are context-dependent. The functional constraints
can use patterns and constants in patterns to restrict the context of a standard
functional dependency to a subset of the relation.

Example 3. The information represented by postal codes is context-dependent.
In the Netherlands, the postal code and house number uniquely identify an
address, but this is not the case in Belgium. We thus use a constant for the
country to make the functional dependency postal-code,number → address, city
context-dependent: ({($na, $s, $a, $nu, $ci , $p, NL)}, pnu → aci).

Observe that functional constraints are not the only generalization of the
functional dependencies which allow the expression of context-dependent func-
tional dependencies. Other examples include conditional functional dependen-
cies [17] and qualified functional dependencies [18]. The conditional functional
dependencies define functional dependencies over a tableau with constants and
blanks. The qualified functional dependencies allow the specification of views in
which functional dependencies should hold. Patterns are conceptually related to
tableaux and to views as tableau queries. Even though functional constraints,
conditional functional dependencies, and qualified functional dependencies are
related in this way, functional constraints on the one hand and conditional and
qualified functional dependencies on the other hand are incomparable, as is ar-
gued next.

Example 4. The constraint “Ireland does not have postal codes” can obviously
not be expressed as a functional constraint. By using constants in the right-
hand side, however, we can express it as the conditional functional dependency
({($na, $s, $a, $nu, $ci , $p, IE)}, ∅ → [$p = null]).4

The use of free variables and constants in patterns cannot be simulated by
the tableaux or views used in conditional and qualified functional dependencies,
however.

4 We adapted the original notation of conditional functional dependencies to better
match our notation of functional constraints.

Because of the use of free variables and constants in patterns, patterns may
also match specific structures in the relation. This is particularly useful if the
underlying relation represents a graph. In this setting, functional constraints
may impose structural constraints.

Example 5. Let Edge(from, to) be a binary relation schema representing the edge
relations of a graph. The functional constraint ({($n, $n)}, ∅ → $n) expresses
that there is at most one node with a self-loop. The pattern {($n, $m), ($m, $n)}
in the functional constraint ({($n, $m), ($m, $n)}, $n → $m) matches cycles
(closed paths) of length 2 (including self-loops). Consider two pairs of such cycles
starting in node v. By the constraint, the second node in both cycles must be
equal, and thus the latter constraint expresses that every node v is part of at
most one cycle of length 2.

For the functional dependencies in the relational data model, a sound and
complete axiomatization is long known [19]. Akhtar et al. presented a sound
and complete axiomatization for the equality-generating constraints in the RDF
data model [1]. As functional constraints are subsumed by equality-generating
constraints, this axiomatization can also be used for the inference of functional
constraints only. In this case, intermediate inference steps can generate equality-
generating constraints that are not necessarily equivalent to functional con-
straints, unfortunately. Akhtar et al. identified the existence of a sound and
complete axiomatization of functional constraints (not including other types of
constraints) as a major open problem. On the one hand, the Armstrong ax-
iomatization for the functional dependencies [19] can be generalized to the set-
ting of functional constraints. This generalization, however, lacks the reasoning
power over patterns necessary for a complete axiomatization. On the other hand,
there is no straightforward way to specialize the axiomatization of the equality-
generating constraints to functional constraints only.

In this paper, we present a sound and complete axiomatization for the func-
tional constraints over relations of arbitrary arity. In particular, the case of
ternary relations yields a sound and complete axiomatization for the functional
constraints in the RDF data model, thereby positively solving the open problem
of Akhtar et al. [1].

The key insight that led to the breakthrough is that the chase algorithm for
equality-generating constraints [1]—which is a variation of the standard chase al-
gorithm [20, 21]—can be normalized to a more specialized, symmetry-preserving,
chase algorithm when applied to functional constraints only. The main idea be-
hind the symmetry-preserving chase algorithm is that, due to their semantics,
chases for functional constraints always start with tableaux that are symmetric.
We prove that during such chases one can always maintain this symmetry in the
tableau. Such a symmetry-preserving chase can be described as a sequence of in-
ferences of functional constraints, which in turn leads to the sound and complete
axiomatization.

Organization. In Section 2, we present the necessary definitions used through-
out this paper. In Section 3, we introduce generalized functional constraints and

equality-generating constraints. In Section 4, the chase algorithm for equality-
generating constraints is specialized to functional constraints and subsequently
normalized to the symmetry-preserving chase algorithm. In Section 5, we present
a sound axiomatization for the functional constraints which suffices to simulate
every symmetry-preserving chase, and which is therefore also complete. In Sec-
tion 6, we conclude on our findings and discuss directions for future work.

2 Preliminaries

Functional and equality-generating constraints [1] have originally been intro-
duced in the context of the RDF data model. In this model, RDF data are
usually represented by a single ternary relation. In the Introduction, we have
already argued that functional and equality-generating constraints are useful in
a wider range of data models. We therefore generalize functional and equality-
generating constraints to relations of arbitrary arity. The following notations and
definitions will be used throughout the paper.

We consider disjoint infinitely enumerable sets U and V of constants and
variables, respectively. For distinction, we usually prefix variables by “$”. A
term is either a constant or a variable. Hence, the set T of all terms equals
U ∪V. A tuple of arity n is a sequence (t1, . . . , tn) of terms. A pattern of arity n
is a finite set of tuples of arity n. If P is a pattern, then VP denotes the set of
all variables in P . A relation R of arity n is a pattern of arity n with VR = ∅.

We define the domain, range, and inverse of a function f in the usual way
and denote these by domain(f), range(f), and f−1, respectively. Two functions
f and g agree on a set S, denoted by f =S g, if f(x) = g(x) for all x ∈ S. The
restriction of a function f to a set S is defined as f |S = {(x, y) | x ∈ S, y = f(x)}.
The identity on a set S is defined as idS = {(s, s) | s ∈ S}. The extension with
identity of a function f to a set S, S ∩ domain(f) = ∅, is f ∪ idS .

The term-based renaming function φa1←↩b1,...,ai←↩bi , a1, b1, . . . , ai, bi ∈ T , is
the function on T for which φa1←↩b1,...,ai←↩bi(bj) = aj , j = 1, . . . , i, and which
is the identity elsewhere. Likewise, the function-based renaming function Φf←↩g,
with f a function and g an injective function on the same set of variables, is the
function on T for which Φf←↩g(g($v)) = f($v), $v ∈ domain(g) = domain(f),
and which is the identity elsewhere. Notice that this function is well defined due
to the injectivity of g.

A function f on terms is extended to tuples, patterns, and sets in the following
natural way: for a tuple (t1, . . . , tn), f((t1, . . . , tn)) = (f(t1), . . . , f(tn)), and, for
a set S, f(S) = {f(s) | s ∈ S}.

For two patterns P and Q, a function e : VP ∪ U → T is an embedding of P
into Q if e|U = idU and e(P) ⊆ Q.

We finally review some notation and terminology that can be applied to any
type of constraint. “Relation R satisfies constraint C ” is denoted by R |≡ C .
A relation R satisfies a set of constraints C, denoted by R |≡ C, if, for every
C ∈ C, R |≡ C . If C1 and C2 are sets of constraints then C1 implies C2, denoted
by C1 |= C2, if, for every relation R with R |≡ C1, we have R |≡ C2. For a set

of constraints C and a single constraint C , we write C |= C for C |= {C}. The
sets of constraints C1 and C2 are equivalent, denoted by C1 ≡ C2, if C1 |= C2 and
C2 |= C1. If, in this notation, Ci, i = 1 and/or i = 2, is a singleton set {Ci}, we
write Ci for Ci, as before. “Constraint C can be derived from set of constraints
C using the set of axioms R” is denoted by C `R C . We usually omit R if R is
clear from the context. The set R is sound if, for all sets of constraints C and
for all single constraints C , C `R C implies C |= C ; it is complete if, for all sets
of constraints C and for all single constraints C , C |= C implies C `R C . A set
of axioms is an axiomatization if it is sound, complete, and recursive.

3 Functional Constraints

We formally define functional constraints on n-ary relations.

Definition 1. A functional constraint is a pair (P ,L → R), where P is a
nonempty pattern and L,R ⊆ VP .

If C = (P ,L → R) is a functional constraint, then P is the pattern of C , L
is the left-hand side of C , and R is the right-hand side of C .

Definition 2. Let R be a relation and let C = (P ,L → R) be a functional
constraint. Then R satisfies C if, for every pair of embeddings e1 and e2 of P
into R with e1 =L e2, we have e1 =R e2.

As already mentioned, the functional constraints are a strict subclass of the
equality-generating constraints, and the functional constraints are a generaliza-
tion of the functional dependencies. Below, we formalize these relationships in
our setting. This allows us to apply results for equality-generating constraints
to functional constraints, and to generalize results for functional dependencies
to functional constraints.

3.1 Equality-Generating Constraints

We formally define equality-generating constraints on n-ary relations.

Definition 3. An equality-generating constraint is a pair (P ,E), where P is a
nonempty pattern and E is a set of equalities of the form t1 = t2 with t1, t2 ∈
VP ∪ U .

Definition 4. Let R be a relation and let C = (P ,E) be an equality-generating
constraint. Then R satisfies C if, for every embedding e of P into R and every
equality (t1 = t2) ∈ E, we have e(t1) = e(t2).

Akhtar et al. [1] already showed that every functional constraint can be
written as an equality-generating constraint. Adopted to our setting, their result
is as follows:

Proposition 1. Let Cfc = (P ,L → R) be a functional constraint. Let f1, f2 :
VP → V be injections with f1 =L f2 and range(f1|VP\L) ∩ range(f2|VP\L) = ∅.
Let Cegc = ((f1 ∪ idU)(P) ∪ (f2 ∪ idU)(P), {f1($r) = f2($r) | $r ∈ R}). Then
Cfc ≡ Cegc.

3.2 Functional Dependencies

We assume familiarity with the functional dependencies of Codd [2, 5].

Proposition 2. Let C = L → R be a functional dependency over the relation
schema R = (A1, . . . , An) with L,R ⊆ {A1, . . . , An}. Consider the functional
constraint Cfc = ({(A1, . . . , An)},L → R), in which the attribute names are
assumed to be variables. Then C ≡ Cfc.

The functional dependencies have a well-known axiomatization in the form
of Armstrong’s axioms, consisting of the three axioms reflexivity, augmentation,
and transitivity [19]. We generalize Armstrong’s axioms to our setting of the
functional constraints.

Proposition 3 (Reflexivity). Let P be a pattern. If R ⊆ L ⊆ VP , then
(P ,L→ R).

Proof (soundness). Let e1 and e2 be embeddings of P into a relation R with
e1 =L e2. We have R ⊆ L and hence also e1 =R e2. ut

Proposition 4 (Augmentation). If (P ,L → R) and V ⊆ VP , then (P ,L ∪
V → R ∪ V).

Proof (soundness). Let e1 and e2 be embeddings of P into a relationR satisfying
(P ,L → R). If we have e1 =L∪V e2, then we have e1 =L e2 and e1 =V e2. By
e1 =L e2 and (P ,L→ R), we also have e1 =R e2 and hence e1 =R∪V e2. ut

Proposition 5 (Transitivity). If (P , V1 → V2) and (P , V2 → V3), then (P , V1
→ V3).

Proof (soundness). Let e1 and e2 be embeddings of P into a relationR satisfying
(P , V1 → V2) and (P , V2 → V3). If e1 =V1 e2, then, by (P , V1 → V2), we have
e1 =V2

e2, and, by (P , V2 → V3), we have e1 =V3
e2. ut

Since Armstrong’s axioms also hold for functional constraints, it follows that
the well-known decomposition and union rules also hold for functional con-
straints.

Lemma 1. Let Cfc = (P ,L→ R) be a functional constraint. Then

Cfc ≡ {(P ,L→ $r) | $r ∈ R}.

From now on, we assume that every functional constraint has at most one
variable in its right-hand side. By Lemma 1, all our results generalize to arbitrary
functional constraints.

4 Chasing Functional Constraints

For equality-generating constraints, a chase-based algorithm is known to de-
cide implication [1]. We use the relationship between functional and equality-
generating constraints described in Proposition 1 to construct a chase-based al-
gorithm that decides implication of functional constraints, shown as Algorithm 1.

The entries in the tableau constructed in Algorithm 1 can be either con-
stants of U or dedicated tableau variables, which we shall denote by capitals.
These tableau variables intuitively correspond to the variables in the pattern of
the target constraint. To this purpose, we assume the existence of an infinitely
enumerable set V of tableau variables. Further, we assume that V is disjoint
from both U and V.5 We generalize embeddings in a straightforward way to also
allow embeddings from and to tableaux.

Algorithm 1 Chase for functional constraints

Input: A set of functional constraints C = {(Pi,Li → $ri) | 1 ≤ i ≤ n}
A functional constraint Cfc = (P ,L→ $r)

Output: C |= Cfc

1: let f1, f2 : VP → V be injections with f1 =L f2 and
range(f1|VP\L) ∩ range(f2|VP\L) = ∅

2: T← (f1 ∪ idU)(P) ∪ (f2 ∪ idU)(P)
3: while there exist functional constraint (Pi,Li → $ri) ∈ C and

embeddings e1, e2 of Pi into T with e1 =Li e2 and e1($ri) 6= e2($ri) do
4: /∗ equalize e1($ri) and e2($ri) in T ∗/
5: if e2($ri) ∈ V then
6: replace all occurrences of e2($ri) in T by e1($ri)
7: else if e1($ri) ∈ V then
8: replace all occurrences of e1($ri) in T by e2($ri)
9: else /∗ e1($ri), e2($ri) ∈ U and e1($ri) 6= e2($ri) ∗/

10: return true
11: end if
12: end while
13: return T |≡ Cfc

In Algorithm 1, we refer to lines 5–8 as equalization steps, to lines 9–10 as
inconsistency termination, and to line 13 as regular termination. Inconsistency
termination indicates that the pattern P is inconsistent with the functional con-
straints in C, and, hence, that the implication under consideration is voidly true.
The following example illustrates the case of inconsistency termination.

Example 6. Consider the set of functional constraints C = {({($a, $b)}, $a →
$b)}. If the functional constraints in this set C hold on a relation R, then no em-
bedding of the pattern P = {($a,Constant1), ($a,Constant2)} with Constant1 6=
5 The distinction between V and V is not necessary, as these sets of variables are not

used in the same context. For clarity, however, we use different sets of variables.

Constant2 into relation R is possible, and, hence, every functional constraint on
the pattern P holds. This is reflected by Algorithm 1: if a functional constraint
on P is chased by C, then inconsistency termination results and true is returned.

Theorem 1. Algorithm 1 is correct: it returns true if and only if C |= Cfc

holds.

Proof (sketch). Algorithm 1 implicitly translates the target functional constraint
Cfc to an equality-generating constraint. Indeed, at line 2, a tableau for the
pattern Pegc = (f1 ∪ idU)(P) ∪ (f2 ∪ idU)(P) is constructed. By Proposition 1,
Pegc is the pattern used by the equality-generating constraint equivalent to Cfc.

At line 3, considering two embeddings e1 and e2 of Pi into T with e1 =Li e2 is
equivalent to considering one embedding of the pattern of the equality-generating
constraint equivalent to (Pi,Li → $ri). Hence, Algorithm 1 can be interpreted
as a chase for an equality-generating constraint with equality-generating con-
straints. Therefore the correctness of Algorithm 1 follows directly from the cor-
rectness of the chase algorithm for equality-generating constraints [1]. ut

So, Algorithm 1 is essentially a chase algorithm for equality-generating con-
straints. As a consequence, it is to be expected that intermediate tableaux pro-
duced by this algorithm do not always correspond to non-trivial functional con-
straints. Hence, the corresponding functional constraints are not always relevant
to answering C |= Cfc. Example 7, below, shows that this is indeed not always
the case.

Example 7. We apply Algorithm 1 to the set of functional constraints

C = {({($a, $b, $c)}, $a→ $c), ({($a, $b, $c), ($a, $d, e)}, $b→ $a)}

and the target functional constraint Cfc = ({($a, $b, $c), ($a, $b, e)}, $b → $a).
We initially have the tableau

{(A1, B,C1), (A1, B, e), (A2, B,C2), (A2, B, e)} .

We can apply ({($a, $b, $c)}, $a → $c) to the first two tuples in this tableau,
yielding the tableau

{(A1, B, e), (A2, B,C2), (A2, B, e)} .

We can use Proposition 1 to search for a functional constraint with such a
pattern when translated to an equality-generating constraint. Let C = (P ,L→
R) be such a functional constraint. It is easily verified that the only way to
achieve this is by relating A1, A2, B,C2 to distinct variables $a1, $a2, $b, $c2 ∈ VP
for which L = {$a1, $a2, $b, $c2}. Since L contains all variables present in the
pattern, it follows that C must be trivial. Hence, the tableau we obtained does
not correspond to a functional constraint relevant to answering C |= Cfc.

Example 7 also illustrates the main problem of Algorithm 1. While the initial
chase tableau exhibits a certain symmetry, this symmetry is lost after perform-
ing the equalization. As a consequence, only trivial functional constraints can be
associated with the resulting tableau. Luckily, Algorithm 1 is non-deterministic
in the equalization steps it performs. We shall take advantage of this to show
the existence of a symmetry-preserving chase, which we define formally in Defi-
nition 7. The steps performed by symmetry-preserving chases are closely related
to sound derivation steps for functional constraint in a way that shall be made
precise in Section 5. Before we can introduce symmetry-preserving chases, we
need some additional terminology.

Definition 5. Let T be a tableau. A tableau state of T is a 4-tuple consisting
of a pattern P ′, a set of variables L′ ⊆ VP ′ , and injections g1, g2 : VP ′ → V
with g1 =L′ g2, range(g1|VP′\L′)∩range(g2|VP′\L′) = ∅, and T = (g1 ∪ idU)(P ′)∪
(g2 ∪ idU)(P ′).

Given a tableau T , we denote a tableau state of T such as in Definition 5
by ST (P ′,L′, g1, g2), this to emphasize the relationship between the tableau and
the corresponding tableau state.

We can easily construct tableau states ST (P ′,L′, g1, g2) for every tableau T .
We simply map every tableau variable from V used in T to a unique variable,
yielding the pattern P ′, and pick L′ = VP ′ . Finally, g1 = g2 maps each variable
in VP ′ to the tableau variable in V it represents.

Example 8. A tableau state for the tableau {(A1, B, e), (A2, B,C2), (A2, B, e)} of
Example 7 is ST(P ′,L′, g1, g2) with P ′ = {($a1, $b, e), ($a2, $b, $c2), ($a2, $b, e)},
L′ = {$a1, $a2, $b, $c2}, and g1 = g2 the injective functions mapping $a1 to A1,
$a2 to A2, $b to B, and $c2 to C2.

Tableau states enjoy the following useful properties.

Lemma 2. Let ST (P ′,L′, g1, g2) be a state of tableau T . Then

1. The pattern (g1 ∪ idU)(P ′) is isomorphic to the pattern (g2 ∪ idU)(P ′).
2. For any tuple t ∈ T , also Φg1←↩g2(t) ∈ T and Φg2←↩g1(t) ∈ T .
3. ST (P ′,L′, g2, g1) is also a tableau state of T .

Proof. We have Lemma 2(1) as g1 and g2 are injections. Lemma 2(2) follows from
Lemma 2(1), g1 =L′ g2, and range(g1|VP′\L′)∩range(g2|VP′\L′) = ∅. Lemma 2(3),
finally, follows immediately from Definition 5. ut

Observe that the initial tableau in Algorithm 1 has state ST(P ,L, f1, f2).
We already noted that this initial tableau exhibits some symmetry due to the
semantics of functional constraints. We would like that, after a sequence of equal-
ization steps, the resulting tableau exhibits a similar symmetry. What we mean
by this is made precise in Definition 6, minding that a sequence of equalization
steps can be viewed as a mapping on tableau entries that maps a tableau into
the tableau resulting from the equalization steps.

Definition 6. Let m be a mapping on tableau entries, mapping a tableau T into
a tableau m(T). The mapping m is symmetry-preserving on T if there exists a
tableau state ST (P ′,L′, g1, g2) of T and Sm(T)(P

′′,L′′, g′1, g
′
2) of m(T) such that

m((g1 ∪ idU)(P ′)) = (g′1 ∪ idU)(P ′′) and m((g2 ∪ idU)(P ′)) = (g′2 ∪ idU)(P ′′).

Definition 6 is visualized in Figure 2. By Lemma 2(1), (g1 ∪ idU)(P ′) and
(g2 ∪ idU)(P ′) are isomorphic, and so are (g′1 ∪ idU)(P ′′) = m((g1 ∪ idU)(P ′))
and (g′2 ∪ idU)(P ′′) = m((g2 ∪ idU)(P ′)). Hence, we can say that m preserves
the isomorphism between (g1 ∪ idU)(P ′) and (g2 ∪ idU)(P ′), explaining why we
call m “symmetry-preserving”.

T m(T)

P ′ P ′′
g1 ∪ idU

g2 ∪ idU

g′1 ∪ idU

g′2 ∪ idU

m

Fig. 2. Visualization of Definition 6.

Example 7 shows that not all sequences of equalization steps preserve sym-
metry. However, if an equalization step is possible in Algorithm 1, then also a
sequence of at most two equalization steps is possible which does preserve sym-
metry. Moreover, all equalization steps concerned use the same constraint. This
is shown next.

Theorem 2. Let T := T be the tableau of Algorithm 1 at line 3. If it is possible
to perform an equalization step using the functional constraint Ci ∈ C, then
it is also possible to perform a sequence of at most two equalization steps, both
using Ci, such that the composition of these equalization steps yields a symmetry-
preserving mapping on T .

Proof (sketch). Let ST (P ′,L′, g1, g2) be a tableau state of T .
If it is possible to perform an equalization with Ci = (Pi,Li → $ri), then,

by Lemma 2(3), we may assume, without loss of generality, that there exist
terms t1, t2 ∈ VP ′ ∪ U such that e1($ri) = (g1 ∪ idU)(t1), and either e2($ri) =
(g1 ∪ idU)(t2) or e2($ri) = (g2 ∪ idU)(t2). Observe that t1 and t2 cannot both
be constants. We now distinguish a number of cases. In each case, we suffice
with providing the required sequence of at most two equalization steps and the
resulting tableau T := T ′, together with a tableau state ST ′(P ′′,L′′, g′1, g

′
2).6

Using the provided tableau states for T and T ′, it is straightforward to verify
that the composition of the equalization steps is a symmetry-preserving mapping.

6 From the provided tableau state ST ′(P
′′,L′′, g′1, g

′
2), it follows implicitly what P ′′,

L′′, g′1, and g′2 are.

First, we consider all the cases where one of t1 and t2 is a variable, and
the other a constant. Since the roles of e1 and e2 are interchangeable, we may
assume, without loss of generality, that t1 = $v1 is a variable and t2 = u2 is a
constant. From the above, it follows that, in all these cases, e1($ri) = g1($v1)
and e2($ri) = u2.

1. $v1 ∈ L′. Performing the equalization step using Ci, e1, and e2 results in the
tableau T ′ = φu2←↩g1($v1)(T) with state

ST ′
(
φu2←↩$v1(P ′),L′ \ {$v1}, g1|VP′\{$v1}, g2|VP′\{$v1}

)
.

2. $v1 6∈ L′. By Lemma 2(2), the functions ε1 = Φg2←↩g1◦e1 and ε2 = Φg2←↩g1◦e2
are embeddings of Pi into T . Since (g1 ∪ idU)($v1) = g1($v1) = e1($ri) 6=
e2($ri) = u2 = (g1 ∪ idU)(u2), we have, by Lemma 2(1), that ε1($ri) =
g2($v1) = (g2 ∪ idU)($v1) 6= (g2 ∪ idU)(u2) = u2 = ε2($ri). The equalization
step using Ci, e1, and e2 on T only affects tuples in (g1 ∪ idU)(P ′) as e1($ri) 6∈
range(g2). Hence, after the equalization step, ε1 and ε2 are embeddings of
Pi into the resulting tableau with ε1($ri) 6= ε2($ri), and, by construction,
we have ε1 =L′ ε2. Therefore, we can perform a second equalization step
using Ci, ε1, and ε2. Performing this second equalization step results in the
tableau T ′ = φu2←↩g1($v1),u2←↩g2($v1)(T) with state

ST ′
(
φu2←↩$v1(P ′),L′, g1|VP′\{$v1}, g2|VP′\{$v1}

)
.

Next, we consider all the cases where t1 = $v1 and t2 = $v2 are both variables,
and where e2($ri) = g1($v2). Observe that $v1 6= $v2 since e1($ri) 6= e2($ri).

3. Both $v1 and $v2 are in L′. Performing the equalization step with Ci, e1,
and e2 results in the tableau T ′ = φg1($v1)←↩g2($v2)(T) with state

ST ′
(
φ$v1←↩$v2(P ′),L′ \ {$v2}, g1|VP′\{$v2}, g2|VP′\{$v2}

)
.

4. At least one of $v1 and $v2 is not in L′. Since the roles of e1 and e2 are inter-
changeable, we may assume, without loss of generality, that $v2 6∈ L′. As in
Case 2, we can perform a second equalization step following the equalization
step with Ci, e1, and e2. Performing this second equalization step results in
the tableau T ′ = φg1($v1)←↩g1($v2),g2($v1)←↩g2($v2)(T) with state

ST ′
(
φ$v1←↩$v2(P ′),L′, g1|VP′\{$v2}, g2|VP′\{$v2}

)
.

Finally, we consider all the cases where t1 = $v1 and t2 = $v2 are both variables,
and where e2($ri) = g2($v2).

5. $v1 = $v2 = $v. As g1 =L′ g2 and e1($ri) 6= e2($ri), we must have $v 6∈
L′. The equalization step using Ci, e1, and e2 results in the tableau T ′ =
φg1($v)←↩g2($v)(T) with state

ST ′
(
P ′,L′ ∪ {$v}, φg1($v)←↩g2($v) ◦ g1, φg1($v)←↩g2($v) ◦ g2

)
.

6. $v1 6= $v2. By Lemma 2(2), ε1 = Φg1←↩g2 ◦ e1 and ε2 = Φg1←↩g2 ◦ e2 are
embeddings of Pi into T . By construction and the injectivity of g1, we have
ε1($ri) = (g1 ∪ idU)($v1) 6= (g1 ∪ idU)($v2) = ε2($ri) and ε1 =L′ ε2. Instead
of performing the equalization using Ci, e1, and e2, we perform the equal-
ization using Ci, ε1, and ε2. Hence, Case 6 has been reduced to Cases 3
and 4. ut

We refer to each sequence of at most two equalization steps from tableau T
to tableau T ′, considered in the proof of Theorem 2, as a symmetry-preserving
step. We refer to the symmetry-preserving step in Case i, 1 ≤ i ≤ 5, in the proof
of Theorem 2 as the symmetry-preserving step of type i.7

Definition 7. Executions of Algorithm 1 consisting of a sequence of symmetry-
preserving steps and in which inconsistency termination occurs if no equalization
steps can be performed, are called symmetry-preserving chases.

Based on Definition 7 and on Theorem 2 we specialize Algorithm 1 to a
symmetry-preserving chase algorithm, shown as Algorithm 2. Notice that we use
the non-deterministic nature of Algorithm 1 to delay inconsistency termination
to the latest-possible moment. By delaying inconsistency termination, we are
able to perform equalization steps until no such step is possible anymore, and
only then, when necessary, perform inconsistency termination.

Algorithm 2 Symmetry-preserving chase for functional constraints

Input: A set of functional constraints C = {(Pi,Li → $ri) | 1 ≤ i ≤ n}
A functional constraint Cfc = (P ,L→ $r)

Output: C |= Cfc

1: let f1, f2 : VP → V be injections with f1 =L f2 and
range(f1|VP\L) ∩ range(f2|VP\L) = ∅

2: T← (f1 ∪ idU)(P) ∪ (f2 ∪ idU)(P)
3: /∗ ST(P ,L, f1, f2) is a tableau state of T ∗/
4: while an equalization step can be performed using functional constraint

(Pi,Li → $ri) ∈ C and embeddings e1, e2 of Pi into T with
e1 =Li e2 and e1($ri) 6= e2($ri) do

5: perform the corresponding symmetry-preserving step
(cf. the proof of Theorem 2)

6: end while
7: if inconsistency termination then
8: return true
9: else

10: return T |≡ Cfc

11: end if

Theorem 2 now immediately yields the following.

7 We have no symmetry-preserving step of type 6, as Case 6 in the proof of Theorem 2
has been reduced to Cases 3 and 4.

Corollary 1. Algorithm 2 is correct: it returns true if and only if C |= Cfc

holds.

5 Axiomatization for the Functional Constraints

Let C be a set of functional constraints and let Cfc = (P ,L → $r) be a single
functional constraint for which C |= Cfc. By simulating a symmetry-preserving
chase for C |= Cfc (Algorithm 2), by a derivation of functional constraints us-
ing sound derivation rules, we construct an axiomatization for the functional
constraints which must be complete by Corollary 1.

First, we consider the (base) cases where the chase terminates immediately
without performing symmetry-preserving steps. By the restricted reflexivity ax-
iom, below, we mean the specialization of the reflexivity axiom in which only
functional constraints are derived with at most one variable in the right-hand
side.

Lemma 3. If only regular termination is possible in a symmetry-preserving
chase for C |= Cfc, then Cfc can be derived using the restricted reflexivity axiom.

Proof. Consider a symmetry-preserving chase for C |= Cfc. If initially only
regular termination is possible, then this chase is also a successful symmetry-
preserving chase for ∅ |= Cfc. It follows that T |≡ Cfc, with T the initial tableau
constructed in lines 1–2 of Algorithm 2. This implies f1($r) = f2($r), which in
turn implies $r ∈ L. Hence, Cfc can be derived using the restricted reflexivity
axiom. ut

For the case where initially only inconsistency termination is possible, we
introduce the inconsistency axiom, of which we prove the soundness next.

Proposition 6 (Inconsistency). If (P ′,L′ → $r′), if there exist two embed-
dings of P ′ into a pattern P which agree on L′ ∈ VP ′ and map $r′ to different
constants of U , and if $r ∈ VP , then (P ,L→ $r).

Proof (soundness). Let e be an embedding of P into a relation R satisfying
(P ′,L′ → $r′). Let h1 and h2 be two embeddings of P ′ into P satisfying the
conditions of Proposition 6. Then, clearly, ε1 = e ◦ h1 and ε2 = e ◦ h2 are
embeddings of P ′ into R with ε1 =L′ ε2 and ε1($ri) 6= ε2($ri). Hence, if there is
an embedding of P into R, then there exist two embeddings e1 and e2 of P ′ into
R that agree on L′, but not on $r′. Hence, embeddings e1 and e2 show that R
violates the functional constraint (P ′,L′ → $r′), a contradiction. We conclude
that there is no embedding of P into R, as a consequence of which R voidly
satisfies (P ,L→ $r). ut

We observe that the inconsistency axiom can be used in Example 6 to derive
(P ,L→ $r) from C. We now generalize this observation.

Lemma 4. If initially only inconsistency termination is possible in a symmetry-
preserving chase for C |= Cfc, then Cfc can be derived from C using the incon-
sistency axiom.

Proof. Consider a symmetry-preserving chase for C |= Cfc. If inconsistency ter-
mination is possible, then there exists a functional constraint Ci = (Pi,Li →
$ri) ∈ C and embeddings e1, e2 of Pi into T with e1 =Li

e2, e1($ri) 6= e2($ri),
and e1($ri), e2($ri) ∈ U . The embeddings e1 and e2 map Pi into T and the
function (f1

−1 ∪ f2−1 ∪ idU), which is well defined, maps T into P . Hence,
h1 = (f1

−1 ∪ f2−1 ∪ idU) ◦ e1 and h2 = (f1
−1 ∪ f2−1 ∪ idU) ◦ e2 are embed-

dings of Pi into P with h1 =Li h2, h1($ri) 6= h2($ri), and h1($ri), h2($ri) ∈ U .
Hence, Cfc can be derived from Ci using the inconsistency axiom. ut

Next, consider the case where the chase for C |= Cfc initially performs a
symmetry-preserving step. We introduce the axioms pattern-modification and
left-modification to deal with this case.

Proposition 7 (Pattern-modification). Let P be a pattern, L ⊆ VP , t ∈
VP ∪ U , and $r, $v ∈ VP . If (P ′,L′ → $r′), and (φt←↩$v(P), φt←↩$v(L) ∩ VP →
{φt←↩$v($r)} ∩ VP), and if there exists two embeddings of P ′ into P which agree
on L′ and map $r′ to t and $v, respectively, then (P ,L→ $r).

Proof (soundness). Let e be an embedding of P into a relation R satisfying
(P ′,L′ → $r′) and (φt←↩$v(P), φt←↩$v(L)∩VP → {φt←↩$v($r)} ∩ VP). Let h1 and
h2 be two embeddings of P ′ into P satisfying the conditions of Proposition 7.
Then, ε1 = e ◦ h1 and ε2 = e ◦ h2 are embeddings of P ′ into R with ε1 =L′ ε2.
By (P ′,L′ → $r′), we have ε1($r′) = ε2($r′), and hence e(t) = e($v). Hence,
e|domain(e)\{$v} is an embedding of φt←↩$v(P) into R.

Now, let e1 and e2 be two embeddings of P into R with e1 =L e2. From
the above, ε1 = e1|domain(e1)\{$v} and ε2 = e2|domain(e2)\{$v} are embeddings of
φt←↩$v(P) into R satisfying ε1 =φt←↩$v(L) ε2, and hence, also ε1 =φt←↩$v(L)∩VP ε2.
By (φt←↩$v(P), φt←↩$v(L)∩VP → {φt←↩$v($r)}∩VP), we have ε1 ={φt←↩$v($r)}∩VP
ε2, and, hence, we have ε1 ={φt←↩$v($r)} ε2. As e1(t) = e1($v) and e2(t) = e2($v),
we also have e1($r) = e2($r), even if $r = $v. ut

Generally speaking, the pattern-modification axiom modifies the pattern of
a functional constraint. More specifically, the axiom generalizes the pattern of a
constraint due to constraints imposed by other functional constraints.

Example 9. Consider the set of functional constraints

C = {({($a, $b, $c)}, $a→ $c), ({($a, $b, $c), ($a, $b, e)}, $b→ $a)}

and the target functional constraint Cfc = ({($a, $b, e)}, $b → $a). We can
derive Cfc from C by using the the embeddings h1 and h2 mapping {($a, $b, $c)}
to {($a, $b, $c)} and {($a, $b, e)}, respectively, and by picking t = e and $v = $c.
Indeed, due to the constraint imposed by ({($a, $b, $c)}, $a → $c), we are able
to generalize ({($a, $b, $c), ($a, $b, e)}, $b→ $a) to Cfc.

Proposition 8 (Left-modification). Let P be a pattern, L ⊆ VP , $v ∈ VP ,
and let i1, i2 : VP → V be injective functions with i1($v) 6= i2($v), i1 =L i2, and
range(i1|VP\L) ∩ range(i2|VP\L) = ∅. If (P ′,L′ → $r′), and (P ,L ∪ {$v} → $r),
and if there exist two embeddings from P ′ into (i1 ∪ idU)(P)∪(i2 ∪ idU)(P) which
agree on L′ and map $r′ to i1($v) and i2($v), respectively, then (P ,L→ $r).

Proof (soundness). Let e1 and e2 be two embeddings of P into a relation R
satisfying (P ′,L′ → $r′), (P ,L ∪ {$v} → $r), and e1 =L e2. Let h1 and h2 be
two embeddings of P ′ into (i1 ∪ idU)(P)∪ (i2 ∪ idU) satisfying the conditions of
Proposition 8. Since i1 =L i2, e1 =L e2, and i1 ∪ idU and i2 ∪ idU are injections
whose range only overlap on L∪ U , the function f = Φe1←↩i1∪idU ◦Φe2←↩i2∪idU is
well-defined. Hence, the functions ε1 = f ◦ h1 and ε2 = f ◦ h2 are embeddings
of P ′ into R with ε1 =L′ ε2. By construction, we have ε1($r′) = e1($v) and
ε2($r′) = e2($v). Hence, by (P ′,L′ → $r′), we have e1($v) = e2($v), and thus
e1 =L∪{$v} e2. By (P ,L ∪ {$v} → $r) and e1 =L∪{$v} e2, we conclude e1($r) =
e2($r). ut

The left-modification axiom generalizes a functional constraint by removing
a variable from its left-hand side. This as a consequence of constraints imposed
by other functional constraints.

Example 10. Consider the set of functional constraints

C = {({($a, $b, $c), (d, $e, $f)}, $c→ $f),

({($a, $b, $c), (d, $e, $f)}, {$a, $f } → $b)}

and the target functional constraint Cfc = ({($a, $b, $c), (d, $e, $f)}, $a → $b).
We pick i1 and i2 such that:

(i1 ∪ idU)({($a, $b, $c), (d, $e, $f)}) = {($a, $b1, $c1), (d, $e1, $f1)}
(i2 ∪ idU)({($a, $b, $c), (d, $e, $f)}) = {($a, $b2, $c2), (d, $e2, $f2)}.

We can derive Cfc from C by picking the embeddings h1 and h2 such that:

h1({($a, $b, $c), (d, $e, $f)}) = {($a, $b1, $c1), (d, $e1, $f1)}
h2({($a, $b, $c), (d, $e, $f)}) = {($a, $b1, $c1), (d, $e2, $f2)}.

Indeed, due to the constraint imposed by ({($a, $b, $c), (d, $e, $f)}, $c → $f),
we are able to generalize ({($a, $b, $c), (d, $e, $f)}, {$a, $f } → $b) to Cfc. We
notice that there is a relation between the left-modification axiom and the well-
known multivalued dependencies [22]. In this example, the possible embeddings
of the pattern {($a, $b, $c), (d, $e, $f)} can be represented by a relational table
T with schema R(A,B,C,E, F). Due to C, the functional dependencies C → F
and AF → B hold on T . Due to the construction of T , also the multivalued
dependency A � EF holds. Indeed, by using well-known derivation rules for
functional dependencies and multivalued dependencies, we conclude A→ B.

We claim that the pattern-modification axiom simulates the symmetry-pre-
serving steps of type 1–4, and the left-modification axiom the symmetry-preserv-
ing steps of type 5. Before proving that this is indeed the case, we introduce
an auxiliary derivation rule. We emphasize that this rule is not part of our
axiomatization. We shall only use its soundness to simplify the proof of Lemma 6.

Lemma 5 (Embedding). If (P ′,L′ → $r′) and h is an embedding from P ′

into P, then (P , h(L′) ∩ VP → {h($r′)} ∩ VP).

Proof (soundness). Let e1 and e2 be embeddings of P into a relationR satisfying
(P ′,L′ → $r′). Then, ε1 = e1 ◦ h and ε2 = e2 ◦ h are embeddings of P ′ into R.
If e1 =h(L′)∩VP e2, then e1 =h(L′) e2 and ε1 =L′ ε2, as embeddings always agree
on constants. By (P ′,L′ → $r′), we have ε1($r′) = ε($r′). As a consequence, we
have e1 =h({$r′}) e2 and, hence, also e1 =h({$r′})∩VP e2. ut

The embedding rule explicitly maps functional constraints to different pat-
terns, whereas the chase algorithm implicitly uses embeddings to deal with dif-
ferent patterns.

Example 11. If ({($a, $b)}, $a → $b) holds, then trivially also ({($c, $d)}, $c →
$d) holds. We can derive ({($c, $d)}, $c → $d) from ({($a, $b)}, $a → $b) by
using the embedding rule with the embedding that maps $a to $c and $b to $d.

We now prove that symmetry-preserving steps can indeed be simulated by
the pattern-modification and left-modification axioms.

Lemma 6. Consider a successful symmetry-preserving chase for C |= Cfc. If
the chase starts with a symmetry-preserving step, using the functional constraint
Ci ∈ C and resulting in tableau T ′ with tableau state ST ′(P

′,L′, g1, g2), then there
exists a functional constraint C = (P ′,L′ → $r′) such that

1. the remainder of the chase starting from tableau T ′ is a successful symmetry-
preserving chase for C |= C.

2. we can derive Cfc from Ci and C using the pattern-modification and left-
modification axioms.

Proof. Let T := T be the initial tableau in Algorithm 2. We assume that the
initial symmetry-preserving step using Ci = (Pi,Li → $ri) equalizes with the
embeddings e1 and e2 satisfying e1 =Li

e2 and e1($ri) 6= e2($ri). The embed-
dings e1 and e2 map Pi into T and the function (f1

−1 ∪ f2−1 ∪ idU), which
is well defined, maps T into P . Hence, h1 = (f1

−1 ∪ f2−1 ∪ idU) ◦ e1 and
h2 = (f1

−1 ∪ f2−1 ∪ idU) ◦ e2 are embeddings of Pi into P with h1 =Li h2.
Since the roles of f1 and f2 are interchangeable, we may assume, without loss of
generality, that e1($r1) = (f1 ∪ idU)(t1) and either e2($r1) = (f1 ∪ idU)(t2) or
e2($r1) = (f2 ∪ idU)(t2). Here, t1 and t2 are terms of VP ∪U which are not both
constants. We now distinguish two cases.

1. The symmetry-preserving step is of type 1–4. Without loss of generality, we
may assume that t2 = $v2 ∈ VP . The symmetry-preserving step results in a
tableau T := T ′ = φ(f1∪idU)(t1)←↩f1($v2),(f2∪idU)(t1)←↩f2($v2)(T) with state

ST ′
(
φt1←↩$v2(P),L \ {$v2}, f1|VP\{$v2}, f2|VP\{$v2}

)
.

Let C = (φt1←↩$v2(P), φt1←↩$v2(L) ∩ VP → {φt1←↩$v2($r)} ∩ VP). Clearly,
T ′ is an initial tableau for the symmetry-preserving chase for C |= C . It

follows that the remainder of the chase for C |= Cfc is a successful chase
for C |= C , as C can be derived from Cfc using the embedding rule with
embedding φt←↩$w. By construction of h1 and h2, we have h1($ri) = t1 and
h2($ri) = $v2. Hence, Cfc can be derived from Ci and C using the pattern-
modification axiom.

2. The symmetry-preserving step is of type 5. Then t1 = t2 = $v ∈ VP . The
symmetry-preserving step results in a tableau T = T ′ = φf1($v)←↩f2($v)(T)
with state

ST ′
(
P ,L ∪ {$v}, φf1($v)←↩f2($v) ◦ f1, φf1($v)←↩f2($v) ◦ f2

)
.

Let C = (P ,L ∪ {$v} → $r). Clearly, T ′ is an initial tableau for the
symmetry-preserving chase for C |= C . It follows that the remainder of
the chase for C |= Cfc is a successful chase for C |= C as C can be derived
from Cfc using a straightforward application of the reflexivity and transi-
tivity axioms. Observe that t1 = f1($v) and t2 = f2($v) together with the
embeddings e1 and e2 satisfy the conditions of Proposition 8, which allows
the derivation of Cfc from Ci and C using the left-modification axiom. ut

As a consequence of Corollary 1, Lemmas 3–6 yield a sound and complete
axiomatization of the functional constraints.

Theorem 3. The restricted reflexivity, inconsistency, pattern-modification, and
left-modification axioms constitute an axiomatization for the functional con-
straints with at most one variable in their right-hand side.

Proof. We have already proven soundness of the axioms and it is straightforward
that the axioms are recursive, hence we only need to verify that the axioms
are complete. Let C be a set of functional constraints and Cfc be a functional
constraint with C |= Cfc. By Corollary 1, there exists a successful symmetry-
preserving chase for C |= Cfc. We must prove, which we shall do by induction on
the number of symmetry-preserving steps performed in this chase, that C ` Cfc.
The base case is that no symmetry-preserving steps are performed, i.e., that the
chase terminates immediately. Then C ` Cfc follows from Lemma 3 and 4.

As inductive hypothesis, we assume that the existence of a successful symme-
try-preserving chase for C′ |= C ′fc with i ≥ 0 symmetry-preserving steps (C′ a set
of functional constraints and C ′fc a single functional constraint) yields C′ ` C ′fc.
For the inductive step, assume that the successful symmetry-preserving chase for
C |= Cfc has i+ 1 symmetry-preserving steps. Assume that the first symmetry-
preserving step uses Ci ∈ C. By Lemma 6, there exists a functional constraint
C = (P ′,L′ → $r′) such that {Ci,C} ` Cfc and such that the remainder of the
chase is a successful symmetry-preserving chase for C |= C . As this chase has
only i symmetry-preserving steps, the inductive hypothesis yields C ` C . We
thus conclude that C ` Cfc, which completes the proof. ut

Using Lemma 1 we generalize Theorem 3 to functional constraints with ar-
bitrary sets of variables in their right-hand side.

Corollary 2. The inconsistency, pattern-modification, and left-modification ax-
ioms together with the reflexivity, augmentation, and transitivity axioms consti-
tute an axiomatization for the functional constraints.

Moreover, we have the following (proof omitted).

Theorem 4. The axiomatization of the functional constraints is no longer com-
plete if one of the axioms reflexivity, augmentation, transitivity, inconsistency,
pattern-modification, or left-modification is removed.

6 Conclusions and directions for future work

Starting from functional and equality-generating constraints for the RDF data
model, we studied functional constraints on arbitrary relations. As our first re-
sult, we proved the existence of a symmetry-preserving chase for the functional
constraints. Using the symmetry-preserving chase, we derived a sound and com-
plete axiomatization for the functional constraints. This solves a major open
problem in the work on functional constraints for the RDF data model.

We believe that our work provides a promising formal basis for reasoning
about functional constraints. As for future work, one remaining open problem
is the existence of Armstrong relations [15, 19] for the functional constraints.
Another avenue of research concerns generalizations of functional constraints.
In particular, adding constants to the right-hand side of functional constraints
would result in a very powerful class of constraints that generalizes both the
functional constraints and the conditional functional dependencies [17]. Finally,
it is unknown what the complexity of working with functional constraints is, as
compared with the functional dependencies and equality-generating constraints.

References

1. Akhtar, W., Cortés-Calabuig, Á., Paredaens, J.: Constraints in RDF. In: Semantics
in Data and Knowledge Bases. Volume 6834 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2011) 23–39

2. Codd, E.F.: Relational completeness of data base sublanguages. Technical Report
RJ 987, IBM Research Laboratory, San Jose, California (1972)

3. Codd, E.F.: Recent investigations in relational data base systems. In: Information
Processing 74. (1974) 1017–1021

4. Beeri, C., Vardi, M.: The implication problem for data dependencies. In: Automata,
Languages and Programming. Volume 115 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (1981) 73–85

5. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

6. Lausen, G., Meier, M., Schmidt, M.: SPARQLing constraints for RDF. In: Pro-
ceedings of the 11th International Conference on Extending Database Technology:
Advances in Database Technology. EDBT ’08 (2008) 499–509

7. Hartmann, S., Link, S.: More functional dependencies for XML. In: Advances in
Databases and Information Systems. Volume 2798 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2003) 355–369

8. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Keys for XML. Com-
puter Networks 39(5) (2002) 473–487

9. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Transactions on Database Systems 34(2) (2009) 10:1–10:33

10. Vincent, M.W., Liu, J., Mohania, M.: The implication problem for ‘closest node’
functional dependencies in complete XML documents. Journal of Computer and
System Sciences 78(4) (2012) 1045–1098

11. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Transactions
on Database Systems 29(1) (2004) 195–232

12. Calbimonte, J.P., Porto, F., Keet, C.M.: Functional dependencies in OWL ABOX.
In: XXIV Simpósio Brasileiro de Banco de Dados. (2009) 16–30

13. Yu, Y., Heflin, J.: Extending functional dependency to detect abnormal data in
RDF graphs. In: The Semantic Web ISWC 2011. Volume 7031 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2011) 794–809

14. Cortés-Calabuig, A., Paredaens, J.: Semantics of constraints in RDFS. In: Pro-
ceedings of the 6th Alberto Mendelzon International Workshop on Foundations of
Data Management. (2012) 75–90

15. Fagin, R.: Horn clauses and database dependencies. Journal of the ACM 29(4)
(1982) 952–985

16. Wijsen, J.: Database repairing using updates. ACM Transactions on Database
Systems 30(3) (2005) 722–768

17. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependen-
cies for capturing data inconsistencies. ACM Transactions on Database Systems
33(2) (2008) 6:1–6:48

18. He, Q., Ling, T.W.: Extending and inferring functional dependencies in schema
transformation. In: Proceedings of the Thirteenth ACM International Conference
on Information and Knowledge Management. CIKM ’04, ACM (2004) 12–21

19. Armstrong, W.W.: Dependency structures of data base relationships. In: Infor-
mation Processing 74. (1974) 580–583

20. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases.
ACM Transactions on Database Systems 4(3) (1979) 297–314

21. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Journal of the
ACM 31(4) (1984) 718–741

22. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependencies in database relations. In: Proceedings of the 1977 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’77 (1977)
47–61

