
Optimizing multiset relational algebra queries
using weak-equivalent rewrite rules

Jelle Hellings1, Yuqing Wu2, Dirk Van Gucht3, and Marc Gyssens4

1 McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L7, Canada
2 Pomona College, 185 E 6th St., Claremont, CA 91711, USA

3 Indiana University, 919 E 10th St., Bloomington, IN 47408, USA
4 Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium

Abstract. Relational query languages rely heavily on costly join op-
erations to combine tuples from multiple tables into a single resulting
tuple. In many cases, the cost of query evaluation can be reduced by
manually optimizing (parts of) queries to use cheaper semi-joins instead
of joins. Unfortunately, existing database products can only apply such
optimizations automatically in rather limited cases.
To improve on this situation, we propose a framework for automatic query
optimization via weak-equivalent rewrite rules for a multiset relational
algebra (that serves as a faithful formalization of core SQL). The weak-
equivalent rewrite rules we propose aim at replacing joins by semi-joins.
To further maximize their usability, these rewrite rules do so by only
providing “weak guarantees” on the evaluation results of rewritten queries.
We show that, in the context of certain operators, these weak-equivalent
rewrite rules still provide strong guarantees on the final evaluation results
of the rewritten queries.

Keywords: Query optimization · Relational algebra · Multiset semantics
· Semi-joins

1 Introduction

To combine tables, SQL relies on join operations that are costly to evaluate. To
reduce the high costs of joins, a significant portion of query optimization and
query planning is aimed at evaluating joins as efficient as possible. Still, it is
well-known that some complex join-based SQL queries can be further optimized
manually by rewriting these queries into queries that involve semi-joins implicitly.
As an illustration, we consider the following example involving a graph represented
as a binary relation. The SQL query

SELECT DISTINCT S.nfrom

FROM edges S, edges R, edges T, edges U

WHERE S.nto = R.nfrom AND R.nto = T.nfrom AND T.nto = U.nfrom;

computes the sources of paths of length four. A straightforward way to evaluate
this query is to compute the joins, then project the join result onto S .nfrom,



and, finally, remove duplicates. The cost of this straightforward evaluation is
very high: in the worst-case, the join result is quartic in size with respect to the
size of the number of edges (the size of the Edges relation). The typical way to
manually optimize this query is to rewrite it as follows:

SELECT DISTINCT nfrom FROM edges

WHERE nto IN (SELECT nfrom FROM edges

WHERE nto IN (SELECT nfrom FROM edges

WHERE nto IN (SELECT nfrom

FROM edges)));

In most relational database systems, the WHERE ... IN ... clauses in the
rewritten query are evaluated using a semi-join algorithm. In doing so, this query
can be evaluated in linear time with respect to the number of edges, which is a
significant improvement. E.g., when evaluated on a randomly generated database
with 75 000 rows (each row a single edge) managed by PostgreSQL 14.1, the
original query could not finish in a reasonable amount of time, whereas the
manually rewritten semi-join style query finished in 90 ms.

We believe that query optimizers should not require users to manually rewrite
queries to enforce particular evaluation strategies: manual rewriting goes against
the advantages of using high-level declarative languages such as SQL. Instead,
we want query optimizers to be able to recognize situations in which semi-join
rewriting is appropriate, and apply such optimizing rewritings automatically.

Traditional approaches towards query optimization for SQL and the relational
algebra usually employ two basic steps [12]. First, the query involved is rewritten.
The rewrite rules used in these rewrites guarantee strong-equivalence: the original
subquery and the rewritten subquery always evaluate to the same result. Examples
of such rules are the well-known push-down rules for selection and projection,
which can reduce the size of intermediate query results significantly. Second, the
order of execution of the operations, appropriate algorithms to perform each
operation, and data access methods are chosen to evaluate the rewritten query.

Unfortunately, requiring strong-equivalence imposes a severe restriction on
the rewrite rules that can be considered. As a consequence, there are significant
limitations to query optimization using traditional query rewriting: often, these
rewrite rules only manipulate the order of operations. More lucrative rewritings,
such as replacing expensive join operations by semi-joins, are not considered
because such rewrites cannot guarantee strong-equivalence.

To improve on this situation, we propose the concept of weak-equivalence,
which is a relaxation of strong-equivalence. Weak-equivalent rewrite rules only
guarantee that the original subquery and the rewritten subquery evaluate to
the same result up to duplicate elimination (with respect to the attributes of
interest). The rewrite rules we propose are aimed at eliminating joins in favor of
semi-joins and eliminating the need for deduplication altogether. To illustrate
the benefits of weak-equivalent rewrites, we present two examples.

As a first example, consider a university database containing the relation
Course, with attributes id and name, and the relation Enroll , with, among its



attributes, cid (the course id). Other attributes of Enroll refer to students. Now
consider the task of rewriting the relational algebra query

πC .name(q) with q = ρC (Course) onC .id=E .cid ρE (Enroll)

that computes the set of names of courses in which students are effectively enrolled.
As the end result of this query is a projection on only the name attribute of
Course (which we assume to be a key), any rewrite of the subquery q can forgo
any of the other attributes. E.g., although subquery q yields a completely different
result than subquery q′ = ρC (Course) nC .id=E .cid ρE (Enroll), their projection
onto C .name is identical.

As a second example, consider a sales database containing the relation Cus-
tomer , with among its attributes cname, the relation Product , with among its
attributes pname and type, and the relation Bought , with among its attributes
cname and pname. We refer to Figure 1 for an instance of this sales database.
Now consider the following query:

SELECT DISTINCT C.cname, P.type

FROM customer C, bought B, product P

WHERE C.cname = B.cname AND B.pname = P.pname AND

P.type = ’food’;

which our rules can rewrite into the following query:

SELECT cname, ’food’ AS type FROM customer WHERE cname IN (

SELECT cname FROM bought WHERE pname IN (

SELECT pname FROM product WHERE type = ’food’));

Observe that the rewritten query does not perform any joins, even though
information from several relations is combined and returned. Moreover, the need
for deduplication is eliminated, as the available key on cname guarantees that
no duplicates are possible in the resultant query. In this particular example, the
original query joins table Bought with two tables on their primary keys. Hence,
all intermediate results remain small if query evaluation chooses a proper join
order. Still, even in this case, the rewritten query evaluates 15%–20% faster on a
randomly generated database with 500 customers, 24 077 products, and 100 000
sale records in Bought .

The latter example also illustrates that the applicability of weak-equivalent
rewrite rules may depend on structural properties, such as keys, of the input
relations and of the intermediate query results. Therefore, we also propose
techniques to derive these properties from the available schema information.

The automatic use of semi-join algorithms in query evaluation has already
been studied and applied before. In these approaches, however, semi-joins are
typically only employed as a preprocessing step for joins. E.g., in distributed
databases, semi-joins are used as an intermediate step to reduce the size of
relations before joining them and, as a consequence, reducing the communication
overhead of distributing (intermediate) relations to other computational nodes [3].
The semi-join has a similar role in the well-known acyclic multi-join algorithm



Customer Product Bought
cname age pname type cname pname price
Alice 19 apple food Alice apple 0.35

Bob 20 apple fruit Alice apple 0.35

Eve 21 banana fruit Bob apple 0.45

car non-food Bob banana 0.50

Eve car 10000

Fig. 1. A database instance for a sales database that has customers, a categorization of
products according to their types, and transaction information for each sale.

of Yannakakis [13]. We take a different approach: using semi-joins, we aim at
eliminating join operations altogether instead of merely reducing their cost.

The usage of weak-equivalent rewrite rules for query optimization is inspired
by the projection-equivalent rewriting techniques for graph query languages on
binary relations proposed by Hellings et al [6, 7]. In the current paper, we not only
adapt these projection-equivalent rewriting techniques to the setting of relational
algebra, but we also extend them to effectively deal with multiset semantics [2, 4, 5,
9–11]. The latter is essential, because we want to use our weak-equivalent rewriting
rules to optimize SQL queries, and SQL has multiset semantics. Furthermore,
we integrate rewrite techniques based on derived structural knowledge on the
schema and knowledge derived from selection conditions, which are both not
applicable in the setting of binary relations.

Finally, we note that there have been previous SQL-inspired studies for
rewriting and optimizing relational algebra with multiset semantics, e.g., [5, 11].
These studies do not cover the main optimizations explored in this work, however.

2 Preliminaries

We consider disjoint infinitely enumerable sets U and N of constants and names,
respectively. A relation schema is a finite set of names, which are used as attributes.
Let a ⊆ N be a relation schema. A tuple over a is a function t : a→ U, a relation
over a ⊆ N is a set of tuples over a, and a multiset relation over a is a pair 〈R; τ〉,
in which R is a relation over a and τ : R → N+ is a function mapping tuples
t ∈ R to the number of copies of t in the multiset relation. We say that 〈R; τ〉 is
a set relation if, for every t ∈ R, we have τ(t) = 1. We write (t : n) ∈ 〈R; τ〉 for
tuple-count pair (t : n) to indicate t ∈ R with τ(t) = n. We write t ∈ 〈R; τ〉 to
indicate t ∈ R and we write t /∈ 〈R; τ〉 to indicate t /∈ R.

Let t, t1, and t2 be tuples over the relation schema a and let b ⊆ a. The
restriction of t to b, denoted by t|b, is defined by t|b = {a 7→ t(a) | a ∈ b}. Tuples
t1 and t2 agree on b, denoted by t1 ≡b t2, if t1|b = t2|b. Let 〈R; τ〉 be a multiset
relation over relation schema a and let k ⊆ a. We say that k is a key of 〈R; τ〉
if, for every pair of tuples t1, t2 ∈ 〈R; τ〉 with t1 ≡k t2, we have t1 = t2.

A database schema is a 4-tuple D = (N,A,K,S), in which N ⊆ N is a set of
relation names, A is a function mapping each relation name to a relation schema,



K is a function mapping each relation name to a set of sets of attributes of the
corresponding relation schema, and S is a function mapping relation names to
booleans. A database instance over schema D = (N,A,K,S) is a function I
mapping each name R ∈ N into a multiset relation. This multiset relation I(R)
has schema A(R), keys K(R), and must be a set relation if S(R) = true.

Let t1 and t2 be tuples over relation schemas a1 and a2, respectively, such
that t1 ≡a1∩a2

t2. The concatenation of t1 and t2, denoted by t1 · t2, is defined
by t1 · t2 = t1 ∪ t2.5 Notice that t1 · t2 is a tuple over a1 ∪ a2. Let a be a relation
schema. A condition on a is either an expression of the form a1 = a2 or of
the form a = u, a, a1, a2 ∈ a and u ∈ U. A tuple t over a satisfies a1 = a2 if
t(a1) = t(a2) and satisfies a = u if t(a) = u. If E is a set of conditions over a,
then tuple t satisfies E if t satisfies each condition in E. By attrs(E), we denote
the set of attributes used in conditions in E.

Example 1. The database schema for the sales database of Figure 1 consist
of the named multiset relations Customer with schema {cname, age}, Product
with schema {pname, type}, and Bought with schema {cname, pname, price}.
Customer and Product are set relations with key {cname} and trivial key
{pname, type}, respectively. Bought is not a set relation and only has the trivial
key {cname, pname, price}.

3 Multiset relational algebra

In this work, we study the multiset relational algebra. To distinguish a traditional
set-based relational algebra operator ⊕ from its multiset relational algebra
counterpart introduced below, we annotate the latter as ⊕̇.

Let D = (N,A,K,S) be a database schema and let I be a database instance
over D. If e is a multiset relational algebra expression over D, which we will
formally define next, then we write S(e;D) to denote the schema of the multiset
relation obtained by evaluating e on an instance over D, and we write [[e]]I
to denote the evaluation of e on instance I. The standard relational algebra
expressions over D are built from the following operators:

– Multiset relation. If R ∈ N is a relation name, then R is an expression with
S(R;D) = A(R) and [[R]]I = I(R).

– Selection.6 If e is an expression and E is a set of conditions on S(e;D), then
σ̇E(e) is an expression with S(σ̇E(e);D) = S(e;D) and [[σ̇E(e)]]I = {(t :n) ∈
[[e]]I | (t satisfies E)}.

– Projection. If e is an expression and b ⊆ S(e;D), then π̇b(e) is an expression
with S(π̇b(e);D) = b and [[π̇b(e)]]I = {(t|b :count(t|b, e)) | t ∈ [[e]]I}, in which
count(t|b, e) =

∑
((s:m)∈[[e]]I)∧(s≡bt)

m.

5 Every occurrence of the operators ∪, ∩, and − in this paper is to be interpreted
using standard set semantics.

6 We only consider conjunctions of conditions in the selection operator because more
general boolean combinations of conditions do not provide additional opportunities
for rewriting in our framework.



– Renaming. If e is an expression, b ⊆ N, and f : S(e;D) → b is a bijec-
tion, then ρ̇f (e) is an expression with S(ρ̇f (e);D) = b and [[ρ̇f (e)]]I =
{(rename(t, f) :m) | (t :m) ∈ [[e]]I}, in which rename(t, f) = {f(a) 7→ t(a) |
a ∈ S(e;D)}.

– Deduplication. If e is an expression, then δ̇(e) is an expression with S(δ̇(e);
D) = A(e) and [[δ̇(e)]]I = {(t : 1) | (t : n) ∈ [[e]]I}.

– Union, intersection, and difference.7 If e1 and e2 are expressions such that
a = S(e1;D) = S(e2;D), then, for ⊕ ∈ {∪,∩,−}, e1 ⊕̇ e2 is an expression
with S(e1 ⊕̇ e2;D) = a and

[[e1 ∪̇ e2]]I = {(t : n1 + n2) | (t : n1) ∈ [[e1]]I ∧ (t : n2) ∈ [[e2]]I} ∪
{(t : n) ∈ [[e1]]I | t /∈ [[e2]]I} ∪ {(t : n) ∈ [[e2]]I | t /∈ [[e1]]I};

[[e1 ∩̇ e2]]I = {(t : min(n1, n2)) | (t : n1) ∈ [[e1]]I ∧ (t : n2) ∈ [[e2]]I};
[[e1 ·− e2]]I = {(t : n) ∈ [[e1]]I | t /∈ [[e2]]I} ∪

{(t : n1 − n2) | (n1 > n2) ∧ (t : n1) ∈ [[e1]]I ∧ (t : n2) ∈ [[e2]]I}.

– θ-join and natural join.8 If e1 and e2 are expressions and E is a set of
conditions on a = S(e1;D) ∪ S(e2;D), then e1

·onE e2 is an expression with
S(e1

·onE e2;D) = a and [[e1
·onE e2]]I is defined by

{(t1 · t2 : n1 · n2) | (t1 : n1) ∈ [[e1]]I ∧ (t2 : n2) ∈ [[e2]]I ∧
t1 ≡S(e1;D)∩S(e2;D) t2 ∧ (t1 · t2 satisfies E)}.

If E = ∅, then we simply write e1
·on e2 (the natural join).

Example 2. Consider the database instance I of Example 1, which is visualized in
Figure 1. The expression e = π̇age(σ̇type=non-food(Customer ·onBought ·onProduct))
returns the ages of people that bought non-food products: as Eve bought a car,
we have [[e]]I = {(age 7→ 21 :1)}. If we change the condition type = non-food into
type = food, resulting in the expression e ′, then [[e ′]]I = {(age 7→ 19 : 2), (age 7→
20 : 1)}, which includes Alice’s age twice as she bought two apples. Observe that
we have [[δ̇(e ′)]]I = {(age 7→ 19 : 1), (age 7→ 20 : 1)}.

The extended multiset relational algebra. We aim at reducing the complexity
of query evaluation by rewriting joins into semi-joins, which are not part of
the standard relational algebra described above. Extended relational algebra
expressions over D are built from the standard relational algebra operators and
the following additional ones:

– θ-semi-join and semi-join.8 If e1 and e2 are expressions and E is a set
of conditions on S(e1;D) ∪ S(e2;D), then e1

·nE e2 is an expression with
S(e1

·nE e2;D) = S(e1;D) and [[e1
·nE e2]]I is defined by

7 The set operators we define have the same semantics as the UNION ALL, INTERSECT
ALL, and EXCEPT ALL operators of standard SQL [8]. The semantics of UNION,
INTERSECT, and EXCEPT can be obtained using deduplication.

8 To simplify presentation, the θ-join and the θ-semi-join also perform equi-join on all
attributes common to the multiset relations involved.



{(t1 : n1) ∈ [[e1]]I | ∃t2 (t2 ∈ [[e2]]I ∧
t1 ≡S(e1;D)∩S(e2;D) t2 ∧ (t1 · t2 satisfies E))}.

If E = ∅, then we simply write e1
·n e2 (the semi-join).

– Max-union.9 If e1 and e2 are expressions such that a = S(e1;D) = S(e2;D),
then e1 ṫ e2 is an expression with S(e1 ṫ e2;D) = a and

[[e1 ṫ e2]]I = {(t : max(n1, n2)) | (t : n1) ∈ [[e1]]I ∧ (t : n2) ∈ [[e2]]I} ∪
{(t : n) ∈ [[e1]]I | t /∈ [[e2]]I} ∪ {(t : n) ∈ [[e2]]I | t /∈ [[e1]]I};

– Attribute introduction.10 If e is an expression, b is a set of attributes with
b ∩ S(e;D) = ∅, and f = {b := x | b ∈ b ∧ x ∈ (S(e;D) ∪ U)} is a set of
assignment-pairs, then ι̇f (e) is an expression with S(ι̇f (e);D) = S(e;D) ∪ b
and [[ι̇f (e)]]I = {(t · {b 7→ value(t, x) | (b := x) ∈ f} :m) | (t :m) ∈ [[e]]I}, in
which value(t, x) = t(x) if x ∈ S(e;D) and value(t, x) = x otherwise.

The extended relational algebra provides all the operators used in our frame-
work and the following example illustrates the use of these operators:

Example 3. Consider the database instance I of Examples 1 and 2. Let e =
σ̇type=food(Customer ·onBought ·onProduct). The query δ̇(π̇age(e)) is equivalent to

δ̇(π̇age(Customer ·n (Bought ·ntype=food Product))). The query δ̇(π̇cname,type(e)) is
equivalent to ι̇type:=food(π̇cname(Customer ·n(Bought ·ntype=foodProduct))). Notice
that we were able to eliminate joins altogether in these rewritings. In the latter
rewriting, we were also able to eliminate deduplication, even though attributes
from several relations are involved. This is because cname is a key of the set
relation Customer .

4 Rewriting queries

Traditional rewrite rules for optimizing queries, such as the selection and projec-
tion push-down rewrite rules, guarantee strong-equivalence: the original subquery
and the rewritten subquery always evaluate to the same result. Requiring this
strong form of equivalence severely limits the optimizations one can perform in
queries that involve projection and/or deduplication steps, as is illustrated in
the following example:

Example 4. Consider the database instance I of Examples 1–3. The query e =
δ̇(π̇cname(Customer ·on Bought)) returns the names of customers that bought a
product. This query is equivalent to e ′ = δ̇(π̇cname(Customer) ·nBought). Observe
that the subqueries Customer ·on Bought and π̇cname(Customer ·on Bought) of e

9 The max-union operators is inspired by the max-based multiset relation union [2].
10 Attribute introduction is a restricted form of the operator commonly known as

generalized projection or extended projection [1, 5].



are not equivalent to any subqueries of e ′, however. Hence, this rewriting cannot
be achieved using strong-equivalent rewriting only. Finally, as {cname} is a key
of Customer , e and e ′ are also equivalent to e ′′ = π̇cname(Customer) ·n Bought .

To be able to discuss the full range of possible optimizations within the scope
of projection and deduplication operations, we differentiate between the following
notions of query equivalence:

Definition 1. Let e1 and e2 be multiset relational algebra expressions over D
with a = S(e1;D) ∩ S(e2;D), and let b ⊆ a. We say that e1 and e2 are strong-
equivalent, denoted by e1 =̇ e2, if, for every database instance I over D, we have
[[e1]]I = [[e2]]I. We say that e1 and e2 are weak-equivalent, denoted by e1 =̃ e2, if,
for every database instance I over D, we have [[δ̇(e1)]]I = [[δ̇(e2)]]I. We say that
e1 and e2 are strong-b-equivalent, denoted by e1 =̇b e2, if, for every database
instance I over D, we have [[π̇b(e1)]]I = [[π̇b(e2)]]I. Finally, we say that e1 and
e2 are weak-b-equivalent, denoted by e1 =̃b e2, if, for every database instance I
over D, we have [[δ̇(π̇b(e1))]]I = [[δ̇(π̇b(e2))]]I.

While strong-equivalent expressions always yield the same result, weak-
equivalent expressions yield the same result only up to duplicate elimination.
For query optimization, the latter is often sufficient at the level of subqueries:
structural properties, such as the presence of a key in one of the relations involved,
may have as a side effect that any duplicates in subqueries are eliminated in the
end result anyway.

Example 5. Consider the queries of Example 4. We have e =̇ e ′ =̇ e ′′, e =̇{cname}
Customer ·n Bought , Customer ·on Bought =̃{cname,age} Customer ·n Bought , and
π̇cname(Customer ·on Bought) =̃{cname} π̇cname(Customer) ·n Bought .

Examples 4 and 5 not only show the relevance of non-strong-equivalent
rewriting rules, they also show that further optimizations are possible if the
expressions evaluate to set relations or satisfy certain keys. Therefore, to facilitate
the discussion, we extend the definition of set relations and keys to expressions.
Let e be an expression over D with a = S(e;D). We say that e is a set relation
if, for every database instance I over D, [[e]]I is a set relation and we say that
b ⊆ a is a key of e if, for every database instance I over D, b is a key of [[e]]I.

The following simple rules can be derived by straightforwardly applying
Definition 1:

Proposition 1. Let e, e1, and e2 be expressions over D with a = S(e;D) =
S(e1;D) ∩ S(e2;D) and b ⊆ a. Let =̂ be either =̇ or =̃. We have:

(i) if e1 =̂ e2, then e1 =̂b e2;
(ii) if e1 =̂a e2, then e1 =̂ e2;
(iii) if c ⊆ b and e1 =̂b e2, then e1 =̂c e2;
(iv) if e1 =̂b e2, then π̇b(e1) =̂ π̇b(e2);
(v) if e1 =̇b e2, then e1 =̃b e2;
(vi) if e1 =̃ e2, then δ̇(e1) =̇ δ̇(e2);



(vii) if e1 =̃b e2, e1 and e2 are set relations, and b is a key of e1 and e2, then
e1 =̇b e2; and

(viii) e =̇b π̇b(e) and e =̃ δ̇(e).

Proposition 1.(iii) allows us to restrict the scope of strong-b-equivalences and
weak-b-equivalences to subsets of b.

In the presence of conditions, as enforced by selections, θ-joins, or θ-semi-joins,
we can also extend the scope of strong-b-equivalences and weak-b-equivalences.
E.g., if u ∈ U is a constant and e1 and e2 are expressions over D with a, a ′, b ∈
S(e1;D) ∩ S(e2;D) and e1 =̃{a} e2, then σ̇a=a′,b=u(e1) =̃{a,a′,b} σ̇a=a′,b=u(e2).
Next, we develop the framework for these scope extensions, for which we first
introduce the closure of a set of attributes under a set of conditions:

Definition 2. Let a be a relation schema, let b ⊆ a, and let E be a set of
conditions over a. The closure of b under E, denoted by C(b;E), is the smallest
superset of b such that, for every condition (v = w) ∈ E or (w = v) ∈ E, v ∈ C(b;
E) if and only if w ∈ C(b;E).

If a ∈ a, then we write C(a;E) for C({a};E).
Notice that, besides attributes, C(b;E) may also contain constants. E.g., if

(b = u) ∈ E for b ∈ b and u ∈ U, then u ∈ C(b;E). We denote C(b;E) ∩ a, the
set of attributes in C(b;E), by attrs(b;E); and we denote C(b;E)− a, the set of
constants in C(b;E), by consts(b;E).

Intuitively, the values of a tuple for the attributes in attrs(b;E) are uniquely
determined by the values of that tuple for the attributes in b. There may be
other attributes c /∈ attrs(b;E) that can only have a single value, however. E.g.,
if attribute c is constraint by a constant condition of the form c = u, u ∈ U.
The values of a tuple for such attributes c are therefore trivially determined by
the values of that tuple for the attributes in b. This observation leads to the
following definition:

Definition 3. Let a be a relation schema, let b ⊆ a, and let E be a set of
conditions over a. The set of attributes determined by b, denoted by det(b;E), is
defined by attrs(b;E) ∪ {a ∈ a | consts(a;E) 6= ∅}.

The intuition given above behind the notions in Definitions 2 and 3 can be
formalized as follows:

Lemma 1. Let t be a tuple over a relation schema a and let E be a set of
conditions over a. If t satisfies E, then, for every a ∈ a, we have

(i) t(a) = t(b) for every b ∈ attrs(a;E);
(ii) t(a) = u for every u ∈ consts(a;E);
(iii) |consts(a;E)| ≤ 1; and
(iv) t ≡det(b;E) t

′ if b ⊆ a, t′ is a tuple over a, t′ satisfies E, and t ≡b t′.

Using Lemma 1, we prove the following rewrite rules for selection:



Theorem 1. Let g and h be expressions over D with g = S(g ;D) and h = S(h;
D), let E be a set of conditions over g, let a ⊆ (h ∩ attrs(E)), let b ⊆ (det(a;
E)− h), and let f be a set of assignment-pairs such that, for each b ∈ b, there
exists (b := x) ∈ f with x ∈ (C(b;E) ∩ (a ∪ U)). We have

(i) if σ̇E(g) =̃a h, then σ̇E(g) =̃a∪b ι̇f (h); and
(ii) if σ̇E(g) =̇a h, then σ̇E(g) =̇a∪b ι̇f (h).

Proof. We first prove (i). Assume σ̇E(g) =̃a h and let I be a database instance
over D. We prove [[δ̇(π̇a∪b(σ̇E(g)))]]I = [[δ̇(π̇a∪b(ι̇f (h)))]]I by showing that there
exist n and n′ such that

(t : n) ∈ [[π̇a∪b(σ̇E(g))]]I ⇐⇒ (t : n′) ∈ [[π̇a∪b(ι̇f (h))]]I.

Assume (t : n) ∈ [[π̇a∪b(σ̇E(g))]]I, and let (t1 : p1), . . . , (tj : pj) ∈ [[σ̇E(g)]]I be all
tuple-count pairs such that, for every i, 1 ≤ i ≤ j, ti ≡a∪b t. By construction, we
have n = p1 + · · ·+ pj . By Lemma 1.(iv) and b ⊆ det(a;E), no other t′ exists
with t′ /∈ {t1, . . . , tj}, (t′ :p′) ∈ [[σ̇E(g)]]I and t′ ≡a t as this would imply t′ ≡a∪b t.
By σ̇E(g) =̃a h, we have (t|a : q) ∈ [[π̇a(h)]]I. Let (s1 : q1), . . . , (sk : qk) ∈ [[h]]I with,
for every i, 1 ≤ i ≤ k, si ≡a t. By construction, we have q = q1 + · · ·+ qk. We
prove that, for all 1 ≤ i ≤ k, t ≡b si. Consider b ∈ b with (b := x) ∈ f :

1. If x ∈ attrs(b;E), then x ∈ a and, by Lemma 1.(i), we have t(b) = t(x). By
x ∈ a and t ≡a si, we have t(b) = t(x) = si(x). From the semantics of ι̇b:=x,
it follows that t(b) = t(x) = si(x) = si(b).

2. If x ∈ consts(b;E), then, by Lemma 1.(iii), there exists a constant u ∈ U
such that consts(b;E) = {u}. By Lemma 1.(ii), we have t(x) = u. From the
semantics of ι̇b:=u, it follows that t(b) = u = si(b).

We conclude that (t : q) ∈ [[π̇a∪b(ι̇f (h))]]I and n′ = q. To prove (ii), we bootstrap
the proof of (i). By σ̇E(g) =̇a h, we have n = q. Hence, we have n = n′ and
(t : n) ∈ [[π̇a∪b(σ̇E(g))]]I if and only if (t : n) ∈ [[π̇a∪b(ι̇f (h))]]I. ut

In the presence of constant conditions, Theorem 1 can be applied to joins to
rewrite them into semi-joins combined with attribute introduction. An example
of such rewrites is exhibited in Example 3.

Applications of Theorem 1 involve attribute introduction, which makes query
results larger. Hence, it is best to delay this operation by pulling the operator
up. Proposition 2 presents rewrite rules to do so.

Proposition 2. Let e, e1, and e2 be expressions over D. We have

(i) σ̇E(ι̇f (e)) =̇ ι̇f (σ̇E(e)) if, for all (b := x) ∈ f , b /∈ attrs(E);
(ii) π̇b(ι̇f (e)) =̇ ι̇f ′(π̇b′(e)) if f ′ ⊆ f and b = b′ ∪ {b | (b := x) ∈ f ′}.
(iii) ρ̇g(ι̇f (e)) =̇ ι̇f ′(ρ̇g′(e)) if g′ = {a 7→ g(a) | a ∈ S(e;D)} and

f ′ = {g(b) := g(x) | (b := x) ∈ f ∧ x ∈ S(e;D)} ∪
{g(b) := x | (b := x) ∈ f ∧ x ∈ U}.



(iv) δ̇(ι̇f (e)) =̇ ι̇f (δ̇(e));

(v) ι̇f (e1)⊕ ι̇f (e2) =̇ ι̇f (e1 ⊕ e2) if ⊕ ∈ {∪̇, ∩̇, ·−};
(vi) ι̇f (e1) ·onE e2 =̇ ι̇f ′(e1

·onE′ e2) if f ′ = {(b := x) ∈ f | b /∈ S(e2;D)} and
E′ = E ∪ {b = x | (b := x) ∈ f ∧ b ∈ S(e2;D)};

(vii) ι̇f (e1) ·nE e2 =̇ ι̇f (e1
·nE′ e2) if

E′ = E ∪ {b = x | (b := x) ∈ f ∧ b ∈ S(e2;D)};

(viii) e1
·nE ι̇f (e2) =̇ e1

·nE′ e2 if E′ = E ∪ {b = x | (b := x) ∈ f ∧ b ∈ S(e1;D)};
(ix) ι̇f (e1) ṫ ι̇f (e2) =̇ ι̇f (e1 ṫ e2); and

(x) ι̇f (ι̇g(e)) =̇ ι̇f∪g(e) if, for all (b := x) ∈ f , we have x ∈ (S(e;D) ∪ U).

Attribute introduction and renaming play complementary roles in the context
of projection, as is illustrated by the following example:

Example 6. Consider the expression e with S(e;D) = {a, b} and consider
the query π̇a,c,d(ι̇c:=a,d:=b(e)). As we do not need b after the projection, we
can also rename b to d instead of introducing d . This alternative approach
results in π̇a,c,d(ι̇c:=a(ρ̇a 7→a,b 7→d(e)). In this expression, we can easily push
the attribute introduction through the projection, resulting in the expression
ι̇c:=a(π̇a,d(ρ̇a 7→a,b 7→d(e))).

The following rewrite rules can be used to apply the rewriting of Example 6:

Proposition 3. Let e be an expression over D and let ι̇f be an attribute intro-
duction operator applicable to e. We have

(i) if (b := x ) ∈ f , x ∈ S(e;D), and c = b for all (c := x ) ∈ f , then

ι̇f (e) =̇(S(e;D)∪{b})−{x} ι̇f\{b:=x}(ρ̇{x 7→b}∪{a 7→a|a∈(S(e;D)−{x})}(e));

(ii) if (b1 := x), (b2 := x) ∈ f , b1 6= b2, then ι̇f (e) =̇ ι̇{b2:=b1}(ι̇f−{b2:=x}(e)).

The rewrite rules of Proposition 2 that involve selections and attribute
introductions put heavy restrictions on the sets of conditions involved. To alleviate
these restrictions, we can use Proposition 3 and the well-known push-down rules
for selection [2, 5, 10, 12], to push some attribute introductions through selections.

What we have done up to now is examining how selection conditions interact
with the notions of strong-equivalence and weak-equivalence. Next, we will put
these results to use. As explained in the Introduction, our focus is twofold:

1. eliminating joins in favor of semi-joins; and

2. eliminating deduplication.

These foci are covered in Sections 4.1 and 4.2, respectively. In Section 4.3, finally,
we investigate how the other operators interact with strong-equivalence and
weak-equivalence.



4.1 θ-joins and θ-semi-joins

Above, we explored how selection conditions interact with strong-equivalence
and weak-equivalence. Since θ-joins and θ-semi-joins implicitly use selection
conditions, the techniques developed also apply to θ-joins and θ-semi-joins, which
are the focus of this subsection. First, we notice that we can use the following
rules to change the conditions involved in selections, θ-joins, and θ-semi-joins.

Proposition 4. Let E and E′ be sets of conditions over the same set of attributes
a. If we have C(a;E) = C(a;E′) for every a ∈ a, then we have

(i) σ̇E(e) =̇ σ̇E′(e);
(ii) e1

·onE e2 =̇ e1
·onE′ e2; and

(iii) e1
·nE e2 =̇ e1

·nE′ e2.

The equivalence at the basis of semi-join-based query rewriting in the set-
based relational algebra is e1 n e2 = πa1

(e1 on e2) with a1 the relation schema
of the relation to which e1 evaluates. Notice, however, that the equivalence
e1
·n e2 = π̇a1(e1

·on e2) does not hold, because the multiset semi-join does not
take into account the number of occurrences of tuples in [[e2]]I:11

Example 7. Consider the database instance I of Example 1, which is visualized
in Figure 1. We apply the queries e1 = π̇{cname,age}(Customer ·on Bought) and
e2 = Customer ·n Bought . We have

[[e1]]I = {(cname 7→ Alice, age 7→ 19 : 2), . . . };
[[e2]]I = {(cname 7→ Alice, age 7→ 19 : 1), . . . }.

Even though the above rewriting of the projection of a join into the corresponding
semi-join is not a strong-equivalent rewriting, we observe that it is still a weak-
equivalent rewriting.

We now formalize rewrite rules involving joins and semi-joins:

Theorem 2. Let g1, g2, h1, and h2 be expressions over D with g1 = S(g1;D),
g2 = S(g2;D), h1 = S(h1;D), h2 = S(h2;D), a1 ⊆ (g1 ∩ h1), a2 ⊆ (g2 ∩ h2),
and a1 ∩ a2 = g1 ∩ g2 = h1 ∩ h2, let E be a set of conditions over a1 ∪ a2, let
b ⊆ (a2 − a1), and let f be a set of assignment-pairs such that, for each b ∈ b,
there exists (b := x) ∈ f with x ∈ (C(b;E) ∩ (a1 ∪ U)). We have

(i) g1
·onE g2 =̃a1∪a2 h1

·onE h2 if g1 =̃a1 h1 and g2 =̃a2 h2;
(ii) g1

·onE g2 =̇a1∪a2
h1
·onE h2 if g1 =̇a1

h1 and g2 =̇a2
h2;

(iii) g1
·onE g2 =̃a1

h1
·nE h2 if g1 =̃a1

h1 and g2 =̃a2
h2;

(iv) g1
·onE g2 =̇a1

h1
·nE h2 if g1 =̇a1

h1, g2 =̃a2
h2, g2 is a set relation, and g2

has a key c with c ⊆ det(a1 ∩ a2;E);

11 We could have defined a multiset semi-join operator that does take into account the
number of occurrences of tuples in [[e2]]I. With such a semi-join operator, we would
no longer be able to sharply reduce the size of intermediate query results, however,
and lose some potential to optimize query evaluation.



(v) g1
·onE g2 =̃a1∪b ι̇f (h1

·nE h2) if g1 =̃a1
h1 and g2 =̃a2

h2; and
(vi) g1

·onE g2 =̇a1∪b ι̇f (h1
·nE h2) if g1 =̇a1

h1, g2 =̃a2
h2, g2 is a set relation,

and g2 has a key c with c ⊆ det(a1 ∩ a2;E).

Proof (Sketch). We prove (i). Let I be a database instance over D. We prove
[[δ̇(π̇a1∪a2(g1

·onE g2))]]I = [[δ̇(π̇a1∪a2(h1
·onE h2))]]I by showing that there exist n

and n′ such that

(t : n) ∈ [[π̇a1∪a2
(g1
·onE g2)]]I ⇐⇒ (t : n′) ∈ [[π̇a1∪a2

(h1
·onE h2)]]I.

Assume (t : n) ∈ [[π̇a1∪a2
(g1
·onE g2)]]I, and let (r1 : p1), . . . , (rk1

: pk1
) ∈ [[g1]]I

and (s1 : q1), . . . , (sk2
: qk2

) ∈ [[g2]]I be all tuple-count pairs such that, for every
i1, 1 ≤ i1 ≤ k1, ri1 ≡a1

t, and, for every i2, 1 ≤ i2 ≤ k2, si2 ≡a2
t. Let

p = p1 + · · · + pk1
and q = q1 + · · · + qk2

. By construction, we have that, for
every i1 and i2, 1 ≤ i1 ≤ k1 and 1 ≤ i2 ≤ k2, (ri1 · si2 : pi1 · qi2) ∈ [[g1

·onE g2]]I.
Hence, (t|a1 : p) ∈ [[π̇a1(g1)]]I, (t|a2 : q) ∈ [[π̇a2(g2)]]I, and n = p · q. By g1 =̃a1 h1

and g2 =̃a2
h2, we have (t|a1

: p′) ∈ [[π̇a1
(h1)]]I and (t|a2

: q′) ∈ [[π̇a2
(h2)]]I. Let

(r′1 : p′1), . . . , (r′l1 : p′l1) ∈ [[h1]]I and (s′1 : q′1), . . . , (s′l2 : q′l2) ∈ [[h2]]I be all tuple-
count pairs such that, for every j1, 1 ≤ j1 ≤ l1, r′j1 ≡a1

t, and, for every j2,
1 ≤ j2 ≤ l2, s′j2 ≡a2

t. By construction, p′ = p′1 + · · ·+ p′l1 and q′ = q′1 + · · ·+ q′l2
and, for every j1 and j2, 1 ≤ j1 ≤ l1 and 1 ≤ j2 ≤ l2, r′j1 · s

′
j2

satisfies E and
(r′j1 · s

′
j2

: p′j1 · q
′
j2

) ∈ [[h1
·onE h2]]I. We conclude (t : p′ · q′) ∈ [[π̇a1∪a2(h1

·onE h2)]]I
and n′ = p′ · q′.

Next, we prove (ii) by bootstrapping the proof of (i). Observe that, by
g1 =̇a1

h1 and g2 =̇a2
h2, we have that p = p′ and q = q′. Hence, n = n′ and

(t : n) ∈ [[π̇a1∪a2
(g1
·onE g2)]]I if and only if (t : n) ∈ [[π̇a1∪a2

(h1
·onE h2)]]I.

The other statements can be proven in analogous ways. ut

The rules of Theorem 2 can be specialized to semi-joins only:

Corollary 1. Let g1, g2, h1, and h2 be expressions which satisfy the conditions
of Theorem 2 and let =̂ be either =̇ or =̃. If g1 =̂a1

h1 and g2 =̃a2
h2, then

g1
·nE g2 =̂a1

h1
·nE h2.

4.2 Deduplication

The second optimization goal we have set ourselves is to eliminate the need for
removing duplicates. This is possible if we can push down deduplication operators
to a level where subexpressions are guaranteed to evaluate to set relations, in
which case deduplication becomes redundant.

The rewrite rules relevant for pushing down deduplication are the following:

Proposition 5. Let e, e1, e2 be expressions over D. We have

(i) δ̇(σ̇E(e)) =̇ σ̇E(δ̇(e));
(ii) δ̇(π̇b(e) =̇ π̇b(δ̇(e)) if b is a key of e;
(iii) δ̇(ρ̇f (e)) =̇ ρ̇f (δ̇(e));

(iv) δ̇(δ̇(e)) =̇ δ̇(e);
(v) δ̇(e1 ∪ e2) =̇ δ̇(e1) ṫ δ̇(e2);

(vi) δ̇(e1 ∩̇ e2) =̇ δ̇(e1) ∩̇ δ̇(e2);
(vii) δ̇(e1

·onE e2) =̇ δ̇(e1) ·onE δ̇(e2);
(viii) δ̇(e1

·nE e2) =̇ δ̇(e1) ·nE e2;
(ix) δ̇(e1 ṫ e2) =̇ δ̇(e1) ṫ δ̇(e2); and
(x) δ̇(ι̇f (e)) =̇ ι̇f (δ̇(e)).



One cannot push down deduplication through difference, however, as δ̇(e1 ·−
e2) =̇ δ̇(e1) ·− δ̇(e2) does not hold in general.

If, in the end, deduplication operates on expressions that evaluate to set
relations, it can be eliminated altogether:

Proposition 6. Let e be an expression over D. If e is a set relation, then
δ̇(e) =̇ e.

4.3 Other rewrite rules

To use the rewrite rules of Proposition 1, Theorem 1, Theorem 2, Proposition 2,
and Proposition 5 in the most general way possible, we also need to know how
the other operators interact with strong-b-equivalence and weak-b-equivalence.
For the unary operators, we have the following:

Proposition 7. Let g and h be expressions over D with a ⊆ S(g ;D) ∩ S(h;D).
Let =̂ be either =̇ or =̃. If g =̂a h, then we have

(i) σ̇E(g) =̂a σ̇E(h) if E is a set of equalities with attrs(E) ⊆ a;
(ii) π̇bg

(g) =̂a∩b π̇bh
(h) if bg ⊆ S(g ;D), bh ⊆ S(h;D), and b = bg ∩ bh ;

(iii) ρ̇fg (g) =̂{fg(a)|a∈a} ρ̇fh (h) if fg : S(g ;D) → bg and fh : S(h;D) → bh are
bijections with, for all a ∈ a, fg(a) = fh(a);

(iv) δ̇(g) =̂a δ̇(h); and
(v) ι̇f (g) =̂a∪b ι̇f (h) if b ⊆ (N−(S(g ;D)∪S(h;D))) and f is a set of assignment-

pairs such that, for each b ∈ b, there exists (b := x) ∈ f with x ∈ (a ∪ U).

For the binary operators, we observe that the θ-join and θ-semi-join operators
are completely covered by Theorem 2 and Corollary 1.

For the union and max-union operators, we have the following:

Proposition 8. Let g1, g2, h1, and h2 be expressions over D and let a be a set
of attributes with ag = S(g1;D) = S(g2;D), ah = S(h1;D) = S(h2;D), and
a ⊆ (ag ∩ ah). Let =̂ be either =̇ or =̃. If g1 =̂a h1 and g2 =̂a h2, then we have
g1 ∪̇ g2 =̂a h1 ∪̇ h2 and g1 ṫ g2 =̃a h1 ṫ h2. If, in addition, a = ag = ah , then
we also have g1 ṫ g2 =̂a h1 ṫ h2.

Finally, for the operators intersection and difference, we propose the following
straightforward rewrite rules:

Proposition 9. Let g1, g2, h1 and h2 be expressions over D with S(g1;D) =
S(g2;D) and S(h1;D) = S(h2;D). Let =̂ be either =̇ or =̃. If g1 =̂ h1 and
g2 =̂ h2, then we have g1 ∩̇ g2 =̂ h1 ∩̇ h2; and if g1 =̇ h1 and g2 =̇ h2, then
g1
·− g2 =̇ h1 ·− h2.

The above rewrite rules for max-union, intersection, and difference are very
restrictive. Next, we illustrate that we cannot simply relax these restrictive rewrite
rules to more general strong-b-equivalence or weak-b-equivalence rewrite rules:



Example 8. Let a = {m,n}, let U , V , V ′, and W be four relation names, and
let I be the database instance mapping these four relation names to the following
multiset relations over a:

[[U ]]I = {({m 7→ u,n 7→ v} : 1), ({m 7→ u,n 7→ w} : 1)};
[[V ]]I = {({m 7→ u,n 7→ v} : 2)}; [[V ′]]I = {({m 7→ u,n 7→ v} : 3)};
[[W ]]I = {({m 7→ u,n 7→ w} : 2)}.

We have V =̃ V ′ and, due to [[π̇m(U )]]I = [[π̇m(V )]]I = [[π̇m(W )]]I = {({m 7→
u} : 2)}, we have U =̇m V =̇m W . We also have

[[V ·−V ′]]I = ∅; [[V ′ ·−V ]]I = {({m 7→ u,n 7→ v} : 1)};
[[V ṫ V ]]I = [[V ]]I [[V ṫW ]]I = [[V ]]I ∪ [[W ]]I;

[[V ∩̇ U ]]I = {({m 7→ u,n 7→ v} : 1)}; [[V ∩̇W ]]I = ∅;
[[V ·−U ]]I = {({m 7→ u,n 7→ v} : 1)}; [[V ·−W ]]I = {({m 7→ u,n 7→ v} : 2)}.

Hence, V ·−V ′ 6=̃ V ′ ·−V , V ṫ V 6=̇m V ṫW , V ∩̇ U 6=̇m V ∩̇W , V ∩̇ U 6=̃m

V ∩̇W , and V ·−U 6=̇m V ·−W . Let I′ be the database instance obtained from
I by changing all the counts in [[U ]]I to 2. Then,

[[V ·−U ]]I′ = ∅; [[V ·−W ]]I′ = {({m 7→ u,n 7→ v} : 2)},

and, hence, we also have V ·−U 6=̃m V ·−W . We must conclude that we cannot
hope for meaningful rewrite rules for max-union, intersection, and difference if
the conditions of Propositions 8 and 9 are not satisfied.

Besides the rewrite rules we introduced, the usual strong-equivalent (multiset)
relational algebra rewrite rules can, of course, also be used in the setting of
non-strong-equivalent rewriting. This includes rules for pushing down selections
and projections [5, 12] and the usual associativity and distributivity rules for
union, intersection, difference, and joins [2].

5 Deriving structural query information

Some of the rewrite rules of Proposition 1, Theorem 2, and Proposition 6 can
only be applied if it is known that some subexpression is a set relation or has
certain keys. Therefore, we introduce rules to derive this information.

We use the well-known functional dependencies as a framework to reason
about keys. A functional dependency over a is of the form b→ c, with b,c ⊆ a.
Let b → c be a functional dependency over a. A relation R over a satisfies
b→ c if, for every pair of tuples r, s ∈ R with r ≡b s, we have r ≡c s. A multiset
relation 〈R; τ〉 over a satisfies b → c if R satisfies b → c. Let D be a set of
functional dependencies over a. The closure of D, which we denote by +(D), is
the set of all functional dependencies over a that are logically implied by D [1].



By fds(e;D), we denote the functional dependencies we derive from expression
e over D. We define fds(e;D) inductively. The base cases are relation names
R ∈ N, for which we have fds(R;D) = +({k → A(R) | k ∈ K(R)}). For the
other operations, we have

fds(σ̇E(e);D) = +({a→ b | ∃c b ⊆ det(c;E) ∧ (a→ c) ∈ fds(e;D)});
fds(π̇c(e);D) = {a→ b ∩ c | a ⊆ c ∧ (a→ b) ∈ fds(e;D)};
fds(ρ̇f (e);D) = {f(a)→ f(b) | (a→ b) ∈ fds(e;D)};
fds(δ̇(e);D) = fds(e;D);

fds(e1 ∪̇ e2;D) = +(∅);
fds(e1 ∩̇ e2;D) = +((fds(e1;D) ∪ fds(e2;D)));

fds(e1 ·− e2;D) = fds(e1;D);

fds(e1
·on e2;D) = +((fds(e1;D) ∪ fds(e2;D)));

fds(e1
·onE e2;D) = fds(σ̇E(e1

·on e2);D);

fds(e1
·nE e2;D) = fds(π̇S(e1;D)(e1

·onE e2);D)

fds(e1 ṫ e2;D) = +(∅);
fds(ι̇f (e);D) = +({({x} ∩ S(e;D)→ {b}) | (b := x) ∈ f} ∪ fds(e;D)).

We define keys(e;D) = {a | (a→ S(e;D)) ∈ fds(e;D)} to be the keys we derive
from expression e over D. Next, we define the predicate set(e;D) which is true
if we can derive that expression e over D always evaluates to a set relation. We
define set(e;D) inductively. The base cases are relation names R ∈ N, for which
we have set(R;D) = S(R). For the other operations, we have

set(σ̇E(e);D) = set(e;D); set(π̇b(e);D) = set(e;D) ∧ b ∈ keys(e;D);

set(ρ̇f (e);D) = set(e;D); set(δ̇(e);D) = true;

set(e1 ∪̇ e2;D) = false; set(e1 ∩̇ e2;D) = set(e1;D) ∨ set(e2;D);

set(e1 ·− e2;D) = set(e1;D); set(e1
·onE e2;D) = set(e1;D) ∧ set(e2;D);

set(e1
·nE e2;D) = set(e1;D); set(e1 ṫ e2;D) = set(e1;D) ∧ set(e2;D);

set(ι̇f (e);D) = set(e;D).

The derivation rules for fds(e;D) and set(e;D) are not complete: it is not
guaranteed that fds(e;D) contains all functional dependencies that must hold in
[[e]]I, for every database instance I over D. Likewise, it is not guaranteed that
set(e;D) = false implies that e is not a set relation.

Example 9. Let u1, u2 ∈ U with u1 6= u2 and let e be an expression over D.
Consider the expressions e1 = σ̇a=u1,a=u2(e) and e2 = e − e. For every database
instance I over D, we have [[e1]]I = [[e2]]I = ∅. Hence, every functional depen-
dency a → b with a,b ⊆ S(e;D) holds on [[e1]]I and on [[e2]]I. In addition,
both [[e1]]I and [[e2]]I are set relations. If fds(e;D) = ∅, then we derive that
fds(e1;D) = +({∅ → {a}}) and fds(e2;D) = +(∅). Observe that fds(e1;D) con-
tains all functional dependencies over S(e1;D) if and only if S(e;D) = {a} and



that fds(e2;D) never contains all functional dependencies over S(e1;D). We also
derive that set(e1;D) = set(e2;D) = false, despite e1 and e2 evaluating to set
relations.

Although the above derivation rules are not complete, they are sound:

Theorem 3. Let e be an expression over D. The derivation rules for fds(e;D)
and set(e;D) are sound: if I is a database instance over D, then

(i) [[e]]I satisfies every functional dependency in fds(e;D); and
(ii) if set(e;D) = true, then [[e]]I is a set relation.

We introduce the following notions. Let 〈R1; τ1〉 and 〈R2; τ2〉 be multiset
relations over a. We say that 〈R1; τ1〉 is a weak subset of 〈R2; τ2〉, denoted by
〈R1; τ1〉 ⊆̃ 〈R2; τ2〉, if R1 ⊆ R2. We say that 〈R1; τ1〉 is a strong subset of 〈R2; τ2〉,
denoted by 〈R1; τ1〉 ⊆̇ 〈R2; τ2〉, if (t :n) ∈ 〈R1; τ1〉 implies (t :m) ∈ 〈R2; τ2〉 with
n ≤ m.12 Lemma 2 lists the main properties of these notions needed to prove
Theorem 3.

Lemma 2. Let 〈R1; τ1〉 and 〈R2; τ2〉 be multiset relations over a. We have

(i) 〈R1; τ1〉 ⊆̃ 〈R2; τ2〉 if 〈R1; τ1〉 ⊆̇ 〈R2; τ2〉;
(ii) 〈R1; τ1〉 satisfies b→ c if 〈R1; τ1〉 ⊆̃ 〈R2; τ2〉 and 〈R2; τ2〉 satisfies functional

dependency b→ c; and
(iii) 〈R1; τ1〉 is a set relation if 〈R1; τ1〉 ⊆̇ 〈R2; τ2〉 and 〈R2; τ2〉 is a set relation.

6 Rewriting the example queries

To illustrate the techniques introduced in this paper, we provide a detailed rewrit-
ing of the queries exhibited in Example 3. We start by considering the queries
δ̇(π̇age(e)) and δ̇(π̇cname,type(e)) with e = σ̇type=food(Customer ·on Bought ·on
Product). As a first step, we use well-known push-down rules for selection [12],
and we get e =̇ Customer ·on Bought ·ontype=food Product .

Consider the query e ′ = Bought ·ontype=food Product , subquery of the above
query. We have {pname} ∈ keys(Product ;D) and Product is a set relation. Hence,
we can apply Theorem 2.(iv) and Theorem 2.(vi) with f = {type := food}, and we
obtain e ′ =̇{cname,pname} Bought ·ntype=food Product and e ′ =̇{cname,pname,type}
ι̇f (Bought ·ntype=food Product). Let e ′′ = Bought ·ntype=food Product . For the

rewriting of δ̇(π̇age(e)), we use Proposition 1.(iii) and Proposition 1.(v) and infer
e ′ =̃{cname} e ′′. Using Theorem 2.(iii) and transitivity, we infer e =̃{cname,age}
Customer ·n e ′′, and, using Proposition 1.(v), we infer e =̃{age} Customer ·n e ′′.
Finally, we can apply Proposition 1.(iv) and Proposition 1.(vi) to conclude
δ̇(π̇age(e)) =̇ δ̇(π̇age(Customer ·n e ′′)). Hence, δ̇(π̇age(e)) =̇ δ̇(π̇age(Customer ·n
(Bought ·ntype=food Product))), which is the query resulting from optimizing

δ̇(π̇age(e)) in Example 3.

12 Notice that 〈R1; τ1〉 ⊆̃ 〈R2; τ2〉 does not imply that 〈R1; τ1〉 is fully included in
〈R2; τ2〉: there can be tuples t ∈ R1 for which τ1(t) > τ2(t).



For the rewriting of δ̇(π̇cname,type(e)), we directly use Proposition 1.(iii) to
obtain e ′ =̇{cname,type} ι̇f (e ′′). We use Theorem 2.(ii) and transitivity to obtain
e =̇{cname,type} Customer ·on ι̇f (e ′′). Using Proposition 2.(vi) and commutativity
of θ-join, we conclude Customer ·on ι̇f (e ′′) =̇{cname,type} ι̇f (Customer ·on e ′′). Next,
consider the query Customer ·on e ′′, subquery of the query ι̇f (Customer ·on e ′′).
Using Theorem 2.(iii), we infer Customer ·on e ′′ =̃{cname} Customer ·n e ′′ and
we apply Proposition 7.(v) with f on both sides to obtain ι̇f (Customer ·on
e ′′) =̃{cname,type} ι̇f (Customer ·n e ′′). Using transitivity, we get e =̃{cname,type}
ι̇f (Customer ·n e ′′) and we apply Proposition 7.(ii) with b = {cname, type}
to obtain π̇b(e) =̃{cname,type} π̇b(ι̇f (Customer ·n e ′′)). Next, we apply Proposi-
tion 2.(ii) on π̇b(ι̇f (Customer ·ne ′′)) and transitivity to obtain π̇b(e) =̃{cname,type}
ι̇f (π̇cname(Customer ·ne ′′). Then we apply Proposition 7.(iv) on both sides and we

use Propositions 1.(iv) and 1.(vii) to obtain δ̇(π̇b(e)) =̇ δ̇(ι̇f (π̇cname(Customer ·n
e ′′))). We observe that Customer is a set relation. Hence, ι̇f (π̇cname(Customer ·n
e ′′)) is also set relation. Finally, we can now apply Proposition 6 and transi-
tivity to conclude δ̇(π̇cname,type(e)) =̇ ι̇f (π̇cname(Customer ·n e ′′)) and, hence,

δ̇(π̇cname,type(e)) =̇ ι̇type:=food(π̇cname(Customer ·n(Bought ·ntype=foodProduct))),

which is the query resulting from optimizing δ̇(π̇cname,type(e)) in Example 3.

7 Conclusion

In this work, we provide a formal framework for optimizing SQL queries using
query rewriting rules aimed at optimizing query evaluation for relational algebra
queries using multiset semantics. The main goals of our rewrite rules are the
automatic elimination of costly join steps, in favor of semi-join steps, and the
automatic elimination of deduplication steps. We believe that our rewrite rules
can be applied to many practical queries on which traditional techniques fall
short. Hence, we believe that our results provide a promising strengthening of
traditional query rewriting and optimization techniques. Based upon the ideas of
our work, there are several clear directions for future work.

We have primarily studied the automatic rewriting of queries using joins into
queries using semi-joins instead. In the setting of SQL, this optimization is usually
obtained by rewriting joins into WHERE ... IN ... clauses. The anti-semi-join
plays a similar role in performing WHERE ... NOT IN ... clauses. As such, it is
only natural to ask whether our framework can be extended to also automatically
rewrite towards anti-semi-join operators. A careful investigation is needed to
fully incorporate anti-semi-joins in our framework, however.

The multiset relational algebra we studied does not cover all features provided
by SQL. Among the missing features are aggregation and recursive queries (via
WITH RECURSIVE), and both are candidates for further study. With respect to
recursive queries, we observe that in the setting of graph query languages, usage
of transitive closure to express reachability can automatically be rewritten to
very fast fixpoint queries [6, 7]. Similar optimizations also apply to simple WITH

RECURSIVE queries, but it remains open whether a general technique exists to
optimize such queries.



References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases. Addison-Wesley
Publishing Company, 1st edn. (1995)

2. Albert, J.: Algebraic properties of bag data types. In: Proceedings of the 17th
International Conference on Very Large Data Bases. pp. 211–219. VLDB ’91,
Morgan Kaufmann Publishers Inc. (1991)

3. Bernstein, P.A., Chiu, D.M.W.: Using semi-joins to solve relational queries. J. ACM
28(1), 25–40 (1981). https://doi.org/10.1145/322234.322238

4. Dayal, U., Goodman, N., Katz, R.H.: An extended relational algebra with control
over duplicate elimination. In: Proceedings of the 1st ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems. pp. 117–123. PODS ’82, ACM
(1982). https://doi.org/10.1145/588111.588132

5. Grefen, P.W.P.J., de By, R.A.: A multi-set extended relational algebra: a
formal approach to a practical issue. In: Proceedings of 1994 IEEE 10th
International Conference on Data Engineering. pp. 80–88. IEEE (1994).
https://doi.org/10.1109/ICDE.1994.283002

6. Hellings, J., Pilachowski, C.L., Van Gucht, D., Gyssens, M., Wu, Y.: From re-
lation algebra to semi-join algebra: An approach for graph query optimization.
In: Proceedings of The 16th International Symposium on Database Programming
Languages. ACM (2017). https://doi.org/10.1145/3122831.3122833

7. Hellings, J., Pilachowski, C.L., Van Gucht, D., Gyssens, M., Wu, Y.: From rela-
tion algebra to semi-join algebra: An approach to graph query optimization. The
Computer Journal 64(5), 789–811 (2020). https://doi.org/10.1093/comjnl/bxaa031

8. International Organization for Standardization: ISO/IEC 9075-1: Information tech-
nology – database languages – SQL (2011)

9. Klausner, A., Goodman, N.: Multirelations: Semantice and languages. In: Proceed-
ings of the 11th International Conference on Very Large Data Bases. pp. 251–258.
VLDB ’85, VLDB Endowment (1985)

10. Lamperti, G., Melchiori, M., Zanella, M.: On multisets in database systems. In:
Proceedings of the Workshop on Multiset Processing: Multiset Processing, Mathe-
matical, Computer Science, and Molecular Computing Points of View. pp. 147–215.
Springer-Verlag (2001)

11. Paulley, G.N.: Exploiting Functional Dependence in Query Optimization. Ph.D.
thesis, University of Waterloo (2000)

12. Ullman, J.D.: Principles of Database and Knowledge-Base Systems: Volume II: The
New Technologies. W. H. Freeman & Co. (1990)

13. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proceedings of the
Seventh International Conference on Very Large Data Bases - Volume 7. pp. 82–94.
VLDB ’81, VLDB Endowment (1981)


