
Details on the brute-force tool

Jelle Hellings

December 26, 2018

Abstract

This document describes the brute-force process to determine di�erences

in the expressive power of speci�c fragments of the relation algebra. We also

describe some implementation details we used to speed-up the described brute-

force procedures.

1 Introduction

The graph data model, in which data is represented by labeled binary relations, is a

versatile and natural data model for representing RDF data, social networks, gene and

protein network, and other types of data. Many practical query languages for graph

data are based on fragments of Tarski’s relation algebra. Examples include XPath,

SPARQL, the RPQs, and GXPath. In our study of the expressive power of fragments

of the relation algebra, we have used two brute-force techniques that we detail in this

note. Before we do so, we introduce the necessary terminology and notations.
1

In this note, a graph is a triple G = (V, Σ, E), withV a �nite set of nodes, Σ a �nite

set of edge labels, and E : Σ→ 2
V×V

a function mapping edge labels to edge relations.

We write [[q]]G to denote the evaluation of query q on graph G. We can interpret a

query q as a Boolean query, in which case [[q]]G , ∅ represents True. For simplicity, we

assume that queries always yield binary relations (sets of node pairs, [[q]]G ⊆ V ×V).

If R is a binary relation, then R|1 = {m | ∃n 〈m,n〉 ∈ R} and R|2 = {n | ∃m 〈m,n〉 ∈ R}
denote the �rst and second column, respectively, of R.

De�nition 1. The relation algebra is de�ned by the grammar

e := ∅ | id | di | ` | `a | πj [e] | π j [e] | e ◦ e | e ∪ e | e ∩ e | e − e,

in which ` ∈ Σ and j ∈ {1, 2}. Let G = (V, Σ, E) be a graph and let e be an expression.
2

The semantics of evaluation is de�ned as follows:

[[∅]]G = ∅;

[[id]]G = {〈m,m〉 | m ∈ V};

[[di]]G = {〈m,n〉 | m,n ∈ V ∧m , n};

[[`]]G = E (`) ;

1
The terminology and notation used in this note is based on the work of Hellings [4].

2
Usually we also consider the Kleene-star operator. As the brute-force techniques are always with

respect to given �nite graphs, the Kleene-star operator does not add expressive power over composition

and union, and, hence, does not need to be considered.

1

[[`a]]G = {〈n,m〉 | 〈m,n〉 ∈ E (`)};
[[πj [e]]]G = {〈m,m〉 | m ∈ [[e]]G |j };

[[π j [e]]]G = [[id]]G − [[πj [e]]]G ;

[[e1 ◦ e2]]G = [[e1]]G ◦ [[e2]]G ;

[[e1 ∪ e2]]G = [[e1]]G ∪ [[e2]]G ;

[[e1 ∩ e2]]G = [[e1]]G ∩ [[e2]]G ;

[[e1 − e2]]G = [[e1]]G − [[e2]]G,

in which R1 ◦ R2 = {〈m,n〉 | ∃z (〈m, z〉 ∈ R1 ∧ 〈z,n〉 ∈ R2)}. We write F ⊆

{di, a, π , π ,∩,−} to denote a set of operators in which π represents both π1 and π2
and, likewise, π represents both π 1 and π 2. By N(F) we denote the fragment of N

that only allows ∅, id, ` ∈ Σ, ◦, ∪, and all operators in F.

The brute-force techniques are used to study the expressive power of query lan-

guages: in speci�c, they can be used to determine whether query languages di�er in

expressive power. To do so, we introduce two notions of query language equivalence:

path equivalence and Boolean equivalence.

De�nition 2. We say that queriesq1 andq2 are path-equivalent, denoted byq1 ≡path q2,
if, for every graph G, [[q1]]G = [[q2]]G and are Boolean-equivalent, denoted by q1 ≡bool

q2, if, for every graph G, [[q1]]G = ∅ if and only if [[q2]]G = ∅. Let z ∈ {path, bool}.

We say that the class of queries L1 is z-subsumed by the class of queries L2, denoted

by L1 �z L2, if every query in L1 is z-equivalent to a query in L2. We say that the

classes of queries L1 and L2 are z-equivalent, denoted by L1 ≡z L2, if L1 �z L2 and

L2 �z L1.

2 Determining language inequivalence

To determine whether L1 and L2 do not have the same expressive power, we can

prove that they are either not path equivalent or not Boolean equivalent. In some

cases, we can do so using brute-force methods. The brute-force method determining

path-inequivalence is the simplest of the two.

2.1 Determining path-inequivalence

Let L1 and L2 be two languages. By De�nition 2, we have L1 �path L2 if we can �nd

a graph and a query q in L1 such that, for every query q′, we have [[q1]]G , [[q2]]G .

One way to determine if this condition holds for a given graph G = (V, Σ, E) and

languages L1 and L2 is by computing the sets of all possible query results of queries

in L1 and L2 when evaluated on G. Let F ⊆ {di, a, π , π ,∩,−}. We write

X (F,G) ≡ {[[e]]G | e a query in N(F)}

to denote the set of all query results of queries inN(F) when evaluated on G. Observe

that [[e]]G ⊆ V ×V for every expression inN(F). Hence, the set X (F,G) is �nite and

‖X (F,G)‖ ≤ 2
‖V ‖2

in the worst case.

Now, to decideN(F1) �path N(F2), for F1,F2 ⊆ {di,
a, π , π ,∩,−}, we only need to

�nd a graph G such that X (F1,G) − X (F2,G). To gain more insight in the di�erences

in the query languages N(F1) and N(F2), it is also useful to �nd an expression q such

that [[q]]G ∈ (X (F1,G) − X (F2,G)).

2

Example 1. Consider a graph G with two nodes m and n and a single edge 〈m,n〉
labeled `. We have [[`a]]G = {〈n,m〉}. Now consider the query languageN(). We have

X (∅,G) = {∅, {〈m,n〉}, {〈m,m〉, 〈n,n〉}, {〈m,m〉, 〈m,n〉, 〈n,n〉}}.

As [[`a]]G < X (∅,G), we conclude N(a) �path N().

Next, we show how to compute the set X (F,G) together with, for every R ∈

X (F,G), an expression e in N(F) with [[e]]G = R. We refer to Algorithm Bruteforce

for details.

We observe that Algorithm Bruteforce follows a simple iterative bottom-up

process. The while-loop of the algorithm satis�es the following invariants:

1. If 〈R, e〉 ∈ L, then e in N(F) and [[e]]G = R.

2. M = {R | ∃e 〈R, e〉 ∈ L}.

3. If R ∈ (X (F,G) −M), then there exists an expression e in N(F) with [[e]]G = R

such that there exists a subexpression e ′ of e with [[e ′]]G = R
′

and there exists

an expression q in N(F) such that 〈R′,q〉 ∈ L[i . . . ‖L‖).

2.2 Determining Boolean-inequivalence

We say that L can distinguish between graphs G1 and G2 if we can �nd a query q in L

such that [[q]]G1 = ∅ and [[q]]G2 , ∅.
Let L1 and L2 be two languages. By De�nition 2, we have L1 �bool L2 if we can

�nd graphs G1 and G2 such that L1 can distinguish between G1 and G2, while L2

cannot distinguish between G1 and G2.

Example 2 (Fletcher et al. [3, Proposition 11]). Consider the graphs G3 and GZ of

Figure 2. The expression e = (E ◦ E) − (E ∪ id) in N(−) can distinguish between G3
and GZ : we have [[e]]G3 = ∅ and [[e]]GZ , ∅.

One way to determine whetherL can distinguish between graphsG1 = (V1, Σ1, E1)
and G2 = (V2, Σ2, E2) is by e�ectively computing the set of all possible query results of

queries in L when evaluated on both G1 and G2. Let F ⊆ {di, a, π , π ,∩,−}. We write

Y (F,G1,G2) ≡ {〈[[e]]G1, [[e]]G2〉 | e a query in N(F)}

to denote the set of all query result-pairs of queries in N(F) when evaluated on G1
and G2. Observe that 〈[[e]]G1, [[e]]G2〉 ⊆ (V1 × V1) × (V2 × V2) for every expression

in N(F). Hence, the set Y (F,G1,G2) is �nite and ‖X (F,G)‖ ≤ 2
‖V1 ‖

2 · ‖V2 ‖
2

in the

worst case. We can adapt Algorithm Bruteforce in a straightforward way to compute

Y (F,G1,G2). To determine whether N(F) can distinguish between G1 and G2, we do

not have to fully compute Y (F,G1,G2): we can stop as soon as we �nd a pair 〈R1, R2〉

with R1 = ∅ and R2 , ∅.

2.3 Implementation of the Bruteforce Algorithm

Implementing the Bruteforce Algorithm is rather straightforward. From the descrip-

tion of the algorithm, it already follows that the search space explored by the algorithm

can quickly become extremely large, even when operating on very small graphs. To

make the tool feasible for practical usages, we have looked for a practical implementa-

tion in which each facet of the algorithm is implemented as e�cient as possible. Below,

3

Algorithm Bruteforce(G = (V, Σ, E), F):

1: L,X := [], ∅
2: ID := {〈m,m〉 | m ∈ V}

3: #(Add all atomic expressions to L).

4: Add(L, X , ∅, ∅)

5: Add(L, X , id, ID)

6: Add(L, X , di, {〈m,n〉 | m,n ∈ V ∧m , n}) if di ∈ F
7: for ` ∈ Σ do

8: Add(L, X , `, E (`))
9: Add(L, X , `a, {〈n,m〉 | 〈m,n〉 ∈ E (`)}) if a ∈ F

10: end for

11: #(Add non-atomic expressions to L).

12: i := 0

13: while i ≤ ‖L‖ do
14: 〈R, e〉 := L[i]
15: Add(L, X , e ◦ e , R ◦ R)

16: Add(L, X , π1[e], {〈m,m〉 | m ∈ R|1}) if π ∈ F
17: Add(L, X , π2[e], {〈m,m〉 | m ∈ R|2}) if π ∈ F
18: Add(L, X , π1[e], ID − {〈m,m〉 | m ∈ R|1}) if π ∈ F
19: Add(L, X , π2[e], ID − {〈m,m〉 | m ∈ R|2}) if π ∈ F
20: for (S,q) ∈ L[0 . . . i) do
21: Add(L, X , e ◦ q, R ◦ S)

22: Add(L, X , q ◦ e , S ◦ R)

23: Add(L, X , e ∪ q, R ∪ S)

24: Add(L, X , e ∩ q, R ∩ S) if ∩ ∈ F

25: Add(L, X , e − q, R − S) if − ∈ F

26: Add(L, X , q − e , S − R) if − ∈ F

27: end for

28: i := i + 1
29: end while

30: return S

31: Algorithm Add(L, X , e , R):

32: if R < X then

33: L := L + [〈R, e〉]
34: X := X ∪ {R}
35: end if

Figure 1: Return X (F,G) with F ⊆ {di, a, π , π ,∩,−}.

G3: GZ :

Figure 2: The 3-clique graph G3 and the bow-tie graph GZ .

we shall discuss the details and considerations that went into our e�orts to imple-

ment the Bruteforce Algorithm in C++. We have made the following basic decisions

4

concerning the algorithm: the list L is implemented as an std::vector of (relation,

expression)-pairs, and the set M is implemented as an std::set of relation-keys.
3

The most important aspect of the implementation are the binary relations and

of the relation algebra operations on binary relations. We notice that the relation

implementation must meet the following criteria:

1. Relation algebra operations on relations must be highly e�cient.

2. Relations must have a small memory footprint (to accommodate storing many

of them).

3. Relations must have a strict ordering de�ned on them (to allow their usage in

std::set).

We have also found that the cost of memory allocation and deallocation contribute

signi�cantly to the overall running time of the implementation.

We consider two distinct implementations, each with their own bene�ts and weak-

nesses. First, in Section 3, we describe the general-purpose array-based edge-list

implementation. Then, in Section 4,we describe specialized matrix-based implementa-

tions that can only deal with graphs of up to 16 nodes.

3 Binary relations as arrays

In our setting, we can simply represent nodes by integers and binary relations by arrays

of integer-pairs. In such a relation-array, we enforce that the node pairs are sorted on

lexicographical order and that there are no duplicate node pairs and that the. Hence,

if R = [〈v1,w1〉, . . . , 〈v ‖R‖,w ‖R‖〉] is a relation-array and 〈vi ,wi 〉, 〈vj ,w j 〉 ∈ R with

1 ≤ i < j ≤ n, then we enforce that vj < vj or (vi = vi) ∧ (wi < w j).

These structural properties will aid in implementing the necessary operators on

binary relations e�ciently. The union, intersection, and di�erence operators (∪, ∩, and

−) can be implemented straightforward by using the highly e�cient standard library

algorithms std::set_union, std::set_intersect, and std::set_difference, re-

spectively.
4

We refer to Table 1 for details. Hence, we only need to provide e�cient

implementations for the composition and the projections. Both projection operators

are straightforward to implement.

Operator: Implementation: Worst-case complexity:

Running time: Bu�er size:

A ∪B std::set_union O(a + b) k
A ∩B std::set_intersect O(a + b) k
A −B std::set_difference O(a + b) k

Table 1: Details on each operator in the array-implementation of binary relations. In

this table, a = ‖A‖, b = ‖B‖, and k = ‖R‖ with R the output list.

3
The std::set is usually implemented using binary search trees. Instead, one can also use

std::unordered_set, which is usually implemented using hash tables, but this set-implementation had

di�culties dealing with large amounts of keys.

4
These standard C++ algorithms are part of the standard library and are de�ned in <algorithm>.

5

3.1 Computing compositions

Next, we look at the composition of two lists, A ◦B. If we have arbitrary lists of node

pairs, then the composition can be computed using a simple nested loop algorithm. We

refer to Figure 3 for details.

Algorithm Compose-NestedLoops(A, B):

1: L := []

2: for 〈m,n〉 ∈ A do

3: for 〈v,w〉 ∈ B do

4: if n = v then

5: L := L + [〈m,w〉]
6: end if

7: end for

8: end for

9: Sort(L, 0)
10: Uniqe(L, 0)

Figure 3: Return A ◦B as a sorted list of edges.

The Compose-NestedLoops Algorithm is very ine�cient. Fortunately, we can

easily use the lexicographical ordering of relation-arrays to our advantage. Let A =

[(m1,n1), . . . , (m ‖A‖,n ‖A‖)] be a relation-array, letm be a node, and let (mi ,ni), (mj ,nj),
1 ≤ i ≤ j ≤ ‖A‖, be the �rst and the last node pairs in A withmi =mj =m. Due to the

lexicographical ordering on B, the �rst node pair (n,w) ∈ B with nk ≤ n, i ≤ k ≤ j will

be found after the last node pair (n′,w ′) ∈ B with n′ < nk . Using these observations

leads to Algorithm Compose-PartialMerge, see Figure 4 for details.

Algorithm Compose-PartialMerge(A, B):

1: L, i := [], 0
2: while i < ‖A‖ do
3: m, j,k := A[i]1, 0, ‖L‖
4: #(Produce pairs 〈m,w〉 with w ∈ B|2).
5: while i < ‖A‖ and A1 =m do

6: n := A[i]2
7: #(Search the position of the �rst pair 〈v,w〉 ∈ B with n ≤ v).

8: j := search(B, j, ‖B‖,n)
9: #(Produce pairs 〈m,w〉 with 〈m,n〉 ∈ A, 〈v,w〉 ∈ B|2, and n = v).

10: while j < ‖B‖ and B[j]1 = n do

11: L, j := L + [〈m,B[j]2〉], j + 1
12: end while

13: i := i + 1
14: end while

15: end while

16: return L

Figure 4: Return A ◦ B as a sorted list of edges. For brevity, we have omitted the

necessary sort and deduplication steps.

6

3.2 Other implementation details

In Algorithm Compose-PartialMerge, we have not speci�ed how to search for the

�rst node pair (n,w) ∈ B with nk ≤ n, i ≤ k ≤ j . We can use basic well-known search

techniques:

Linear search. We can simply traverse B for every nodem. In the worst case, this

is optimal. If, however, most pairs in B do not join with pairs in A, then the

traversal will do unnecessary work.

Binary search. Due to the lexicographical ordering, we can also use binary search

to search in B. On the one hand, binary search will be fast if only a few pairs in

B join with pairs in A: in this case, binary search will skip most of B. On the

other hand, if most pairs in B join with pairs in A, then straightforward linear

traversal will be much more e�cient.

Exponential search. To combine the bene�ts of linear search and binary search, we

can also use exponential search [1], as detailed in Figure 5, which will perform

acceptable in all cases.

Table 2 lists the complexity of these three search algorithms.

Algorithm Search-Exponential(L, lo, hi, n):

1: lo, step, hi := j, 1, ‖L‖
2: while lo + step < hi and L[lo + step]1 < n do

3: step := 2 · step

4: end while

5: return Search-Binary(L, lo + (step ÷ 2), min(lo + step, hi))

Figure 5: Algorithm Search-Exponential returns the index of the �rst pair 〈v,w〉 ∈
L[lo : hi] with n ≤ v , returns hi if no such pair is found.

Algorithm: Complexity:

Search-Linear(L, lo, hi,n) Θ(k)
Search-Binary(L, lo, hi,n) Θ(log(hi − lo))
Search-Exponential(L, lo, hi,n) Θ(log(k))

Table 2: Complexity of the search algorithms that returns the index lo + k of the �rst

element in L[lo, . . . , hi) equal-or-greater than the speci�ed value n.

Using either linear search or exponential search, we have the following (when we

omit the necessary sort and deduplication steps):

Theorem 1. Algorithm Compose-PartialMerge computes A ◦B in O(a + a1 × b), in
which a = ‖A‖, a1 = ‖A|1‖, and b = ‖B‖.

We notice that other join algorithms have better theoretical complexities: in this

setting, however, we usually deal with small relations for which this algorithm su�ces.

In our implementation we have made several low-level decisions which each

increased performance of the relation-arrays signi�cantly. These decisions are:

7

1. We represent relation-arrays by �xed-size dynamic arrays (a struct holding a

pair of pointers to the begin and end of the array in heap memory) instead

of std::vector, as �xed-size dynamic arrays have a slightly smaller memory

footprint.

2. To reduce memory allocations and deallocations, all algorithms use a shared

�xed-size bu�er and use this bu�er to construct all intermediate query results

in. After a query result is constructed in this bu�er, at which point we know the

exact size, we copy the query result to a freshly created relation array of exactly

the right size.

3. We can de�ne the strict ordering on relation-arrays A < B by using the lexico-

graphical comparison of lists A ≺ B, of which an e�cient implementation is

provided by std::lexicographical_compare. As relation-array comparisons

are very common due to the usage of std::set, we have opted for the following

strict-ordering instead:

A < B if (‖A‖ < ‖B‖) or (‖A‖ = ‖B‖ ∧A ≺ B).

This ordering has the bene�t that most relation-array comparisons can be per-

formed without looking up the content of the arrays (which would involve

following an additional pointer).

4. We do not store node pairs of x-bit integer nodes as std::pair<X, X>, but

instead we encode node pairs as a single 2x-bit value of which the x most

signi�cant bits represent the �rst node, and the remaining bits represent the

second node. E.g. node pairs of 8-bit nodes are stored in single std::uint16_t
values. This will make node pair comparisons much faster. (Notice that node

pair comparisons play a crucial role in almost all operations).

4 Binary relations as matrices

Assume we have at most n nodes. It is well known that in this setting a set of node

pairs can be represented by a boolean n × n matrix. We only introduce the minimum

notation and background necessary. For more details on matrices and their role

in graph representations and graph algorithms, we refer to standard textbooks [2].

Consider the following n × n matrix:

m =

©­­­­«
m1,1 m1,2 . . . m1,n
m2,1 m2,2 . . . m2,n
...

...
. . .

...
mn,1 mn,2 . . . mn,n

ª®®®®¬
.

We, again, represent nodes by unique integers. Let i and j be nodes, 1 ≤ i, j ≤ n. We

say that the node pair 〈i, j〉 is in the binary relation represented by m (〈i, j〉 ∈ m) if

and only if mi , j is True.

Next, we take a look at how to implement the relation algebra operators we

support. First, in Sections 4.1, we present these operators at an abstract level (as

matrix operations). Then, in Section 4.2, we look at the details on how to e�ciently

implement these operators for 64-bit 8× 8 matrices using MMX/SSE instructions. Next,

in Section 4.3, we brie�y look at how to e�ciently implement these operators for 64-bit

8

8 × 8 matrices using 128-bit SSE2 instructions. Finally, in Section 4.4, we look at the

details on how to e�ciently implement these operators for 256-bit 16 × 16 matrices

using AVX2 instructions.

4.1 Relation algebra operators on matrices

We look at how to perform each relation operator on matrices.

Union, intersection, and di�erence. Let u and v be n × n matrices. If we assume

that these matrices are stored as a consecutive sequence of n2-bits, then the union

u ∪ v can be computed by taking the bitwise-or of u and v and the intersection u ∩ v
can be computed by taking the bitwise-and of u and v.

For the di�erence u − v, we �rst need the complement of v. If c is the complement

of v, then 〈i, j〉 ∈ c if and only if 〈i, j〉 < v. The complement c can be computed by

taking the bitwise-not of c. Them, we simply compute u ∩ c by taking the bitwise-and

of u and c.

Converse. On matrices, the converse operator can be evaluated using the standard

matrix transpose operator. Let m be a n × n matrix. The transpose mT
is de�ned by

©­­­­«
m1,1 m1,2 . . . m1,n
m2,1 m2,2 . . . m2,n
...

...
. . .

...
mn,1 mn,2 . . . mn,n

ª®®®®¬
T

=

©­­­­«
m1,1 m2,1 . . . mn,1
m1,2 m2,2 . . . mn,2
...

...
. . .

...
m1,n m2,n . . . mn,n

ª®®®®¬
.

The equivalence of the converse operator and transposition is straightforward to see.

We have 〈i, j〉 ∈ m−1 if and only if 〈j, i〉 ∈ m if and only if 〈i, j〉 ∈ mT
.

Projections. Let m be a n × n matrix. We have

π1[

©­­­­«
m1,1 m1,2 . . . m1,n
m2,1 m2,2 . . . m2,n
...

...
. . .

...
mn,1 mn,2 . . . mn,n

ª®®®®¬
] =

©­­­­«
p1 ⊥ . . . ⊥
⊥ p2 . . . ⊥
...
...
. . .

...
⊥ ⊥ . . . pm

ª®®®®¬
,

in which ⊥ = False and pi = (m1,1 ∨m1,2 ∨ · · · ∨m1,n), 1 ≤ i ≤ n. We can compute

π2[m] by computing π1[mT].

Composition. On matrices, the composition operator can be evaluated using the

standard Boolean matrix multiplication operator. The Boolean matrix multiplication

9

w = u · v is de�ned by

©­­­­«
u1,1 u1,2 . . . u1,n
u2,1 u2,2 . . . u2,n
...

...
. . .

...
un,1 un,2 . . . un,n

ª®®®®¬
·

©­­­­«
v1,1 v1,2 . . . v1,n
v2,1 v2,2 . . . v2,n
...

...
. . .

...
vn,1 vn,2 . . . vn,n

ª®®®®¬
=

©­­­­«
∨

1≤k≤n (u1,k ∧ vk ,1)
∨

1≤k≤n (u1,k ∧ vk ,2) . . .
∨

1≤k≤n (u1,k ∧ vk ,n)∨
1≤k≤n (u2,k ∧ vk ,1)

∨
1≤k≤n (u2,k ∧ vk ,2) . . .

∨
1≤k≤n (u2,k ∧ vk ,n)

...
...

. . .
...∨

1≤k≤n (un,k ∧ vk ,1)
∨

1≤k≤n (un,k ∧ vk ,2) . . .
∨

1≤k≤n (un,k ∧ vk ,n)

ª®®®®¬
,

with wi , j =
∨

1≤k≤n (ui ,k ∧ vk , j) = (ui ,1 ∧ v1, j) ∨ (ui ,2 ∧ v2, j) ∨ . . . (ui ,n ∧ vn, j)
for every 1 ≤ i, j ≤ n. The relationship between composition and Boolean matrix

multiplication is straightforward. We have 〈i, j〉 ∈ (u ◦ v) if and only if there exists

a k such that 〈i,k〉 ∈ u and 〈k, j〉 ∈ v. Observe that k ∈ {1, . . . ,n}. Hence, we have

〈i, j〉 ∈ (u ◦ v) if and only if (〈i, 1〉 ∈ u) ∧ (〈1, j〉 ∈ v), or (〈i, 2〉 ∈ u) ∧ (〈2, j〉 ∈ v), . . . , or

(〈i,n〉 ∈ u) ∧ (〈n, j〉 ∈ v) holds. This condition is equivalent to the condition expressed

by wi , j . We conclude 〈i, j〉 ∈ (u ◦ v) if and only if 〈i, j〉 ∈ w.

4.2 The 8-node MMX/SSE implementation

Our �rst specialized matrix implementation supports graphs with up to 8 nodes

and provides high-performance implementations of the operations of Section 4.1

using MMX/SSE instructions. Instead of low-level assembly instructions, we shall

use intrinsics to specify speci�c instructions.
5

Before we discuss the details of each

operator, we �rst look at how we represent 8 × 8 matrices in memory. Let

m =

©­­­­«
m1,1 m1,2 . . . m1,8

m2,1 m2,2 . . . m2,8

...
...

. . .
...

m8,1 m8,2 . . . m8,8

ª®®®®¬
be a 8 × 8 matrix. In memory, this matrix is represented by a 8-byte (64-bit) sequence

with the following layout:

1︷︸︸︷
m1,1

2︷︸︸︷
m1,2 . . .

8︷︸︸︷
m1,8︸ ︷︷ ︸

1st byte

9︷︸︸︷
m2,1

10︷︸︸︷
m2,2 . . .

16︷︸︸︷
m2,8︸ ︷︷ ︸

2nd byte

. . .

57︷︸︸︷
m8,1

58︷︸︸︷
m8,2 . . .

64︷︸︸︷
m8,8︸ ︷︷ ︸

8th byte

.

Next, we look at how to implement the converse, �rst projection, and composition

e�ciently (Section 4.1 already provided e�cient implementations for the set operators).

Converse. We will compute the transpose of an 8 × 8 matrix by extracting each

column of the matrix e�ciently. To do so, we need two MMX/SSE instructions. First,

the SSE instruction

int _mm_movemask_pi8(__m64 a)

5
For details on each of the intrinsics used in this document. we refer to the Intel Intrinsics Guide at

https://software.intel.com/sites/landingpage/IntrinsicsGuide.

10

interprets the 64-bit value a as a sequence of eight bytes, and returns the most signi�-

cant bit in each byte. Interpreted in matrix terms, we have

_mm_movemask_pi8(

©­­­­«
a1,1 a1,2 . . . a1,8
a2,1 a2,2 . . . a2,8
...

...
. . .

...
a8,1 a8,2 . . . a8,8

ª®®®®¬
) = [a1,8 a2,8 . . . a8,8].

Hence, a single call of _mm_movemask_pi8 will return the last column of matrix a.

Next, the MMX instruction

__m64 _mm_slli_pi16(__m64 a, int imm8)

interprets the 64-bit value a as a sequence of four 16-bit integers, and shifts the bits in

each integer imm8 positions to the left (�lling with zeros). For our usage, we will only

use this instruction with imm8 = 1. Interpreted in matrix terms, we have

_mm_slli_pi16(

©­­­­­­«

a1,1 a1,2 . . . a1,8
a2,1 a2,2 . . . a2,8
a3,1 a3,2 . . . a3,8
...

...
. . .

...
a8,1 a8,2 . . . a8,8

ª®®®®®®¬
, 1) =

©­­­­­­«

⊥ a1,1 . . . a1,7
a1,8 a2,2 . . . a2,7
⊥ a2,1 . . . a2,7
...

...
. . .

...
a7,8 a8,1 . . . a8,7

ª®®®®®®¬
,

in which ⊥ = False. Hence, a single call of _mm_slli_pi16 will shift every column in

the matrix to the right (for our purpose, the newly created �rst column can be ignored

entirely).
6

Using these two MMX/SSE instructions, the transpose of an 8 × 8 matrix m can be

constructed by Algorithm MatrixTranspose-8 of Figure 6. This algorithm assumes

that m is already stored in a variable of type __m64. If this is not the case, then the

MMX instruction

__m64 _mm_cvtsi64_m64(__int64 a)

can be used to load m in a variable of type __m64.

Algorithm MatrixTranspose-8(m):

1: r := [0, 0, 0, 0, 0, 0, 0, 0] #(r is a sequence of eight bytes).

2: for i := 7 down to 0 do

3: r[i] := _mm_movemask_epi8(m) #(Obtain and set the ith row of bT).

4: m := _mm_slli_epi16(m, 1)
5: end for

6: return r

Figure 6: Return mT
, the converse of the binary relation m.

First projection. Let m be a 8 × 8 matrix. The ith row [mi ,1 mi ,2 . . . mi ,8],

1 ≤ i ≤ 8, is stored as the ith byte of m. Hence, we have m[i] , 0 if and only if

〈i, i〉 ∈ π1[m], and we simply set the corresponding bit accordingly.

6
The x86 and x86-64 architectures are Little-Endian. Hence, shifting the bits in a 16-bit integer to the

left, will shift bits to higher addresses in memory (‘to the right’ in memory).

11

Composition. We will compute the Boolean matrix product of two 8 × 8 matrices

one entire row at a time. To do so, we will need four additional MMX instructions.

First, the MMX instruction

__m64 _mm_setzero_si64(void)

will return a 64-bit value with all bits set to zero. Interpreted in matrix terms, we have

_mm_setzero_si64() =

©­­­­«
⊥ ⊥ . . . ⊥
⊥ ⊥ . . . ⊥
...
...
. . .

...
⊥ ⊥ . . . ⊥

ª®®®®¬
.

in which ⊥ = False. Second, the MMX instruction

__m64 _mm_set1_pi8(char a)

will repeat a byte eight times to make a 64-bit value. Interpreted in matrix terms, we

have

_ma_set1_pi8([a1 a2 . . . a8]) =

©­­­­«
a1 a2 . . . a8
a1 a2 . . . a8
...
...
. . .

...
a1 a2 . . . a8

ª®®®®¬
.

Third, the MMX instruction

__m64 _m_pand(__m64 a, __m64 b)

returns the bitwise-and of the two arguments. Interpreted in matrix terms, we have

_m_pand(

©­­­­«
a1,1 a1,2 . . . a1,8
a2,1 a2,2 . . . a2,8
...

...
. . .

...
a8,1 a8,2 . . . a8,8

ª®®®®¬
,

©­­­­«
b1,1 b1,2 . . . b1,8
b2,1 b2,2 . . . b2,8
...

...
. . .

...
b8,1 b8,2 . . . b8,8

ª®®®®¬
) =

©­­­­«
a1,1 ∧ b1,1 a1,2 ∧ b1,2 . . . a1,8 ∧ b1,8
a2,1 ∧ b2,1 a2,2 ∧ b2,2 . . . a2,8 ∧ b2,8
...

...
. . .

...
a8,1 ∧ b8,1 a8,2 ∧ b8,2 . . . a8,8 ∧ b8,8

ª®®®®¬
.

Finally, the MMX instruction

__m64 _mm_cmpeq_pi8(__m64 a, __m64 b)

will interpret the 64-bit values a and b as sequences of eight bytes, compare corre-

sponding bytes in these sequences, and return a sequence of eight bytes holding the

result. Let 1 ≤ i ≤ 8. In the result, the ith byte is set to 255 (all bits set) if the ith bytes

in a and b are equivalent, and the ith byte is set to 0 (no bits set) if the ith bytes in a

12

and b are not equivalent. Interpreted in matrix terms, we have

_mm_cmpeq_pi8(

©­­­­«
a1,1 a1,2 . . . a1,8
a2,1 a2,2 . . . a2,8
...

...
. . .

...
a8,1 a8,2 . . . a8,8

ª®®®®¬
,

©­­­­«
b1,1 b1,2 . . . b1,8
b2,1 b2,2 . . . b2,8
...

...
. . .

...
b8,1 b8,2 . . . b8,8

ª®®®®¬
) =

©­­­­«
r1 r1 . . . r1
r2 r2 . . . r2
...
...

. . .
...

r8 r8 . . . r8

ª®®®®¬
with ri = True if and only if [ai ,1 ai ,2 . . . ai ,8] = [bi ,1 bi ,2 . . . bi ,8].

Using these MMX instructions, the composition of 8×8 matrices can be constructed

by Algorithm MatrixMultiply-8 of Figure 7. As with Algorithm MatrixTranspose-8,

Algorithm MatrixMultiply-8 assumes that the input, a and b, are already stored in a

variable of type __m64. If this is not the case, then _mm_cvtsi64_m64(__int64) can

be used accordingly.

Algorithm MatrixMultiply-8(a, b):

1: r := [0, 0, 0, 0, 0, 0, 0, 0] #(r is a sequence of eight bytes).

2: t := bT

3: z := _mm_set1_pi8(0) #(Matrix with all values set to False).

4: for i := 0 up to 7 do

5: i := _mm_set1_pi8(ith byte in a) #(Every row is the ith row in a).

6: #(Next, we will compute the entire ith row of r = a · b).

7: i := _m_pand(i, t) #(First, perform all ∧-operations necessary).

8: i := _mm_cmpeq_pi8(i, z) #(Next, perform all ∨-operations).

9: #(The value ij ,8, 1 ≤ j ≤ 8, is True if and only if (a · b)i , j is False).

10: r[i] := ¬(_mm_movemask_epi8(i)) #(Bitwise operators).

11: end for

12: return r

Figure 7: Return a · b, the composition of the binary relations a and b.

4.3 The 8-node SSE2 implementation

Certain compilers do not support the 64-bit __m64 data type or the MMX/SSE in-

structions used in Algorithms MatrixTranspose-8 and MatrixMultiply-8 when

compiling 64-bit binaries. In these cases, it is straightforward to port the code above

to use 128-bit SSE2 instructions instead. See Table 3 for details.

4.4 The 16-node AVX2 implementation

Our second specialized matrix implementation supports graphs with up to 16 nodes

and provides high-performance implementations of the operations of Section 4.1 using

13

Original instruction: 128-bit SSE2 instruction:

_mm_movemask_pi8 int _mm_movemask_epi8(__m128i a)
_mm_slli_pi16 __m128i _mm_slli_epi16(__m128i a, int imm8)
_mm_cvtsi64_m64 __m128i _mm_cvtsi64_si128(__int64 a)
_mm_set1_pi8 __m128i _mm_set1_epi8 (char a)
_m_pand __m128i _mm_and_si128 (__m128i a, __m128i b)
_mm_cmpeq_pi __m128i _mm_cmpeq_epi8 (__m128i a, __m128i b)

Table 3: Mapping between 64-bit MMX/SSE instructions used in Algo-

rithms MatrixTranspose-8 and MatrixMultiply-8 and the corresponding

128-bit SSE2 instructions.

AVX2 instructions. Before we discuss the details of each operator, we �rst look at how

we represent 16 × 16 matrices in memory. Let

m =

©­­­­«
m1,1 m1,2 . . . m1,8 m1,9 m1,10 . . . m1,16

m2,1 m1,2 . . . m2,8 m2,9 m2,10 . . . m2,16

...
...

. . .
...

...
...

. . .
...

m16,1 m16,2 . . . m16,8 m16,9 m16,10 . . . m16,16

ª®®®®¬
be a 16 × 16 matrix. In memory, this matrix is represented by a 32-byte (256-bit)

sequence with the following layout:

1︷︸︸︷
m1,1

2︷︸︸︷
m1,2 . . .

8︷︸︸︷
m1,8︸ ︷︷ ︸

1st byte

9︷︸︸︷
m2,1

10︷︸︸︷
m2,2 . . .

16︷︸︸︷
m2,8︸ ︷︷ ︸

2nd byte

. . .

113︷︸︸︷
m16,1

127︷︸︸︷
m16,2 . . .

128︷︸︸︷
m16,8︸ ︷︷ ︸

16th byte

129︷︸︸︷
m1,9

130︷︸︸︷
m1,10 . . .

136︷︸︸︷
m1,16︸ ︷︷ ︸

17th byte

137︷︸︸︷
m2,9

138︷︸︸︷
m2,10 . . .

144︷︸︸︷
m2,16︸ ︷︷ ︸

18th byte

. . .

249︷︸︸︷
m16,9

250︷︸︸︷
m16,10 . . .

256︷︸︸︷
m16,16︸ ︷︷ ︸

32th byte

Observe that the 256-bit sequence consisting of two 128-bit parts, each encoding

eight columns. Next, we look at how to implement the converse, �rst projection, and

composition e�ciently (Section 4.1 already provided e�cient implementations for the

set operators and the second projection).

Converse. We will compute the transpose of a 16×16 matrix in a similar way as how

we computed the transpose of a 8× 8 matrix. To do so, we need two AVX2 instructions.

First, the instruction

int _mm256_movemask_epi8(__m256i a)

operates similar to _movemask_pi8: it interprets the 256-bit value a as an array of 32

bytes, and returns the most signi�cant bit in each byte. Interpreted in matrix terms,

14

we have

_mm256_movemask_epi8(

©­­­­«
a1,1 a1,2 . . . a1,16
a2,1 a2,2 . . . a2,16
...

...
. . .

...
a16,1 a16,2 . . . a16,16

ª®®®®¬
) =

[a1,8 a2,8 . . . a16,8 a1,16 a2,16 . . . a16,16].

Observe that only due to the memory layout we use, the most signi�cant bits in the

�rst 16 bytes represents the 8-th column of the matrix, and the most signi�cant bit in

the last 16 bytes represents the 16-th column of the matrix. Hence, due to the memory

layout we use, a single call of _mm256_movemask_epi8 will return the 8th and 16th

column of the matrix a. Next, the instruction

__m256i _mm256_slli_epi16(__m256i a, int imm8)

extends _mm_slli_pi16 to operate on sixteen 16-bit integers in stead of four. Using

these two AVX2 instructions, the transpose of an 16 × 16 matrix m can be constructed

by Algorithm MatrixTranspose-16 of Figure 8. Algorithm MatrixTranspose-16

assumes that m is already stored in a variable of type __m256i.

Algorithm MatrixTranspose-16(m):

1: r := [0, 0, . . . , 0] #(r is a sequence of thirty-two bytes).

2: for i := 7 down to 0 do

3: r := _mm256_movemask_epi8(m) #(Obtain the ith and (i+8)th row of bT).

4: m := _mm256_slli_epi16(m, 1)
5: r[i], r[i + 16] := 1st byte in r , 2nd byte in r
6: r[i + 8], r[i + 24] := 3th byte in r , 4th byte in r
7: end for

8: return r

Figure 8: Return mT
, the converse of the binary relation m.

First projection. Let m be a 16 × 16 matrix. The ith row [mi ,1 mi ,2 . . . mi ,16],

1 ≤ i ≤ 16, is stored in two parts. The part [mi ,1 mi ,2 . . . mi ,8] is stored in the

ith byte of m and the part [mi ,9 mi ,2 . . . mi ,16] is stored in the (i+16)th byte of

m. Hence, (m[i] , 0) ∨ (m[i + 16] , 0) if and only if 〈i, i〉 ∈ π1[m].
To reduce the amount of work, we can construct a 16-byte (128-bit) sequence S

consisting of the bitwise-or of the �rst 16-bytes and the last 16-bytes in m. With this

sequence, we have (S[i] , 0) if and only if 〈i, i〉 ∈ π1[m], and we can simply set the

corresponding bit accordingly. We construct S using Algorithm OrLowHigh-16 of

Figure 9.

Composition. We will compute the Boolean matrix product of two 16× 16 matrices

one entire row at a time using Alorithm MatrixTranspose-16 of Figure 10. This Al-

gorithm is based directly on Algorithm MatrixMultiply-8, while taking into account

the necessary changes due to the memory layout of 16 × 16 matrices.

15

Algorithm OrLowHigh-16(m):

1: low := _mm256_extractf128_si256(m, 0) #(Return �rst 128-bit half of m).

2: high := _mm256_extractf128_si256(m, 1) #(Return second 128-bit half of m).

3: return _mm_or_si128(low, high) #(Bitwise-or of the two halves).

Figure 9: Return the sequence S obtained by the bitwise-or of the �rst 16-bytes and

the last 16-bytes in m.

Algorithm MatrixMultiply-16(a, b):

1: r := [0, 0, . . . , 0] #(r is a sequence of thirty-two bytes).

2: t := bT

3: z := _mm256_setzero_si256(0) #(Matrix with all values set to False).

4: for i := 0 up to 15 do

5: #(Make a matrix in which every row is the ith row in bT).

6: low := _mm_set1_epi8(ith byte in a) #(Set the �rst eight columns).

7: high := _mm_set1_epi8((i+16)th byte in a) #(Set the last eight columns).

8: i := _mm256_set_m128i(high, low) #(Combine �rst and last eight columns).

9: #(Next, we will compute the entire ith row of r = a · b).

10: i := _mm256_and_si256(i, t)
11: i := _mm256_cmpeq_epi8(i, z)
12: z := _mm256_movemask_epi8(i)
13: r[i] := ¬(1st byte in z) ∨ ¬(3rd byte in z) #(Bitwise operators).

14: r[i + 16] := ¬(2nd byte in z) ∨ ¬(4th byte in z) #(Bitwise operators).

15: end for

16: return r

Figure 10: Return a · b, the composition of the binary relations a and b.

5 Relation-arrays versus relation-matrices

Usually, a matrix representation is space-e�cient if the node pair set is dense (has close

to the maximum of n2 pairs), but not when the node pair set is sparse (in which case a

relation-array implementation is more space-e�cient). For small graphs with only a

few nodes, this rule of thumb is misleading, however. If we have at most 8 nodes, then

we can store any binary relation over these nodes already in a 8
2 = 64-bit (8-byte)

value. Likewise, if we have at most 16 nodes, then we can store any binary relation

over these nodes already in a 16
2 = 256-bit (32-byte) value.

Compare this to the relation-array implementation of Section 3: independent of

the number of edges the relation-arrays uses storage for at least two pointers, which,

on a 64-bit platform, costs 2 · 64 = 128-bit of storage.
7

Hence, for very small graphs

(at most 8 nodes), the Boolean 8 × 8 matrix implementation is always smaller, and for

small graphs (at most 16 nodes), the Boolean 16 × 16 matrix implementation is smaller

whenever the binary relation holds at least a few node pairs (eight node pairs if we

choose the 8-bit nodes).

We refer to Table 4 for an overview.

7
This is a lower bound, as the process of dynamic memory allocation can have additional storage

overheads.

16

Max. num. nodes: Implementation: Memory Requirements (bytes)

Base: Per edge: Total:

8 MMX/SSE 8 8

16 AVX2 32 32

2
8 = 256 Array 16

†
2 16

† + 2e
2
16 = 65536 Array 16

†
4 16

† + 4e
2
32 = 4294967296 Array 16

†
8 16

† + 8e

Table 4: Details on each binary relation implementation. In this table, e represents

the number of node pairs in the binary relation, and
†

indicates that the size depends

on the size of pointers on the platform (we have assumed a 64-bit architecture with

8-byte pointers).

References

[1] Jon Louis Bentley and Andrew Chi-Chih Yao. “An almost optimal algorithm for

unbounded searching”. In: Information Processing Letters 5.3 (1976), pp. 82–87.

doi: 10.1016/0020-0190(76)90071-5.

[2] Thomas H. Cormen et al. Introduction to Algorithms. 3rd. The MIT Press, 2009.

[3] George H. L. Fletcher et al. “Relative Expressive Power of Navigational Querying

on Graphs”. In: Proceedings of the 14th International Conference on Database Theory.

ACM, 2011, pp. 197–207. doi: 10.1145/1938551.1938578.

[4] Jelle Hellings. “On Tarski’s Relation Algebra: querying trees and chains and the

semi-join algebra”. PhD thesis. Hasselt University and transnational University

of Limburg, 2018.

17

