Details on the brute-force tool

Jelle Hellings

December 26, 2018

Abstract

This document describes the brute-force process to determine differences
in the expressive power of specific fragments of the relation algebra. We also
describe some implementation details we used to speed-up the described brute-
force procedures.

1 Introduction

The graph data model, in which data is represented by labeled binary relations, is a
versatile and natural data model for representing RDF data, social networks, gene and
protein network, and other types of data. Many practical query languages for graph
data are based on fragments of Tarski’s relation algebra. Examples include XPath,
SPARQL, the RPQs, and GXPath. In our study of the expressive power of fragments
of the relation algebra, we have used two brute-force techniques that we detail in this
note. Before we do so, we introduce the necessary terminology and notations.!

In this note, a graph is a triple G = (V, %, E), with V a finite set of nodes, X a finite
set of edge labels, and E : 3 — 2V*V a function mapping edge labels to edge relations.
We write [q]lg to denote the evaluation of query g on graph G. We can interpret a
query q as a Boolean query, in which case [q]lg # 0 represents True. For simplicity, we
assume that queries always yield binary relations (sets of node pairs, [q]lg € V x V).
IfR is a binary relation, then R|; = {m | 3n (m,n) € R} and R|; = {n | Im (m,n) € R}
denote the first and second column, respectively, of R.

Definition 1. The relation algebra is defined by the grammar
e=0]id|di| €| ¢ | me]|7mjle] |eceleUelene|e—e,

in which £ € ¥ and j € {1,2}. Let G = (V, 3, E) be a graph and let e be an expression.?
The semantics of evaluation is defined as follows:

[0]g = 0;
lidlg = {{m,m) | m e V};
[dig = {{m,n) | m,n €V Am # n};
[flg =E(©);
1The terminology and notation used in this note is based on the work of Hellings [4].
2Usually we also consider the Kleene-star operator. As the brute-force techniques are always with

respect to given finite graphs, the Kleene-star operator does not add expressive power over composition
and union, and, hence, does not need to be considered.

["1g = {{n,m) | (m,n) € E(O)};
[7lellg = {{m,m) | m € [elgl;};
[7ilellg = lidlg - [7;lellg;

[e1oezxllg = [erllg o [[e2]lg;
erVezlg = [eillg U lezllgs
[er Nezxllg = [eillg N [ezllgs
[e: —exllg = [erllg — [ez1g-

in which R; o Ry = {{m,n) | 3z ({m,z) € Ry A (z,n) € Ry)}. We write F C
{di, ", m, 7, N, =} to denote a set of operators in which x represents both 7; and
and, likewise, 7 represents both 7; and 7,. By N(F) we denote the fragment of N
that only allows 0, id, £ € %, o, U, and all operators in J.

The brute-force techniques are used to study the expressive power of query lan-
guages: in specific, they can be used to determine whether query languages differ in
expressive power. To do so, we introduce two notions of query language equivalence:
path equivalence and Boolean equivalence.

Definition 2. We say that queries g; and g; are path-equivalent, denoted by g1 =path q2,
if, for every graph G, [q1]lg = [[92]lg and are Boolean-equivalent, denoted by q; =po0l
q2, if, for every graph G, [q1]lg = 0 if and only if [g2]l¢g = 0. Let z € {path, bool}.
We say that the class of queries £; is z-subsumed by the class of queries £,, denoted
by £; <, L, if every query in £; is z-equivalent to a query in £,. We say that the
classes of queries £ and £, are z-equivalent, denoted by L, =, L, if L; <, L, and
Lo 2. L.

2 Determining language inequivalence

To determine whether £; and £, do not have the same expressive power, we can
prove that they are either not path equivalent or not Boolean equivalent. In some
cases, we can do so using brute-force methods. The brute-force method determining
path-inequivalence is the simplest of the two.

2.1 Determining path-inequivalence

Let £y and £, be two languages. By Definition 2, we have £y Zpahn L if we can find
a graph and a query g in £; such that, for every query ¢’, we have [¢1]g # [g2]g-

One way to determine if this condition holds for a given graph G = (V, %, E) and
languages £; and £, is by computing the sets of all possible query results of queries
in £; and £, when evaluated on G. Let F C {di, ", &, 7, N, —}. We write

X(7.6) = {lelg | e a query in N(F)}

to denote the set of all query results of queries in N (J) when evaluated on G. Observe
that [[e]lg € V XV for every expression in N(F). Hence, the set X(J, G) is finite and
I X(F,)| < 2IlVI” in the worst case.

Now, to decide N'(F1) Zpath N(F?), for F1, F, C {di, ~, 7,7, N, -}, we only need to
find a graph G such that X(F1, G) — X(53, G). To gain more insight in the differences
in the query languages N'(J7) and N(J?), it is also useful to find an expression ¢ such
that [q]lg € (X(F1,G) — X(F2, G)).

Example 1. Consider a graph G with two nodes m and n and a single edge (m, n)
labeled £. We have [¢"]lg = {{n, m)}. Now consider the query language N(). We have

X(0,G) = {0, {{m. m)}, {{m, m), (n,)}, {{m, m), (m, n), (n,n)}}.

As ["]lg ¢ X(0,G), we conclude N (™) Zpath NO).

Next, we show how to compute the set X(J, G) together with, for every R €
X(T, G), an expression e in N(J) with [e] g = R. We refer to Algorithm BRUTEFORCE
for details.

We observe that Algorithm BrRUTEFORCE follows a simple iterative bottom-up
process. The while-loop of the algorithm satisfies the following invariants:

1. If (R,e) € L, then e in N(F) and [e]lg = R.
2. M={R | Je (R,e) € L}.

3. IfR € (X(&, G) — M), then there exists an expression e in N(F) with [e] g = R
such that there exists a subexpression e’ of e with [[e’]]g = R’ and there exists

an expression q in N(F) such that (R’, q) € L[i...|L])).

2.2 Determining Boolean-inequivalence

We say that L can distinguish between graphs G, and G, if we can find a query ¢q in £
such that [¢q]lg, = 0 and [[q]lg, # 0.

Let £; and £, be two languages. By Definition 2, we have L1 £poo1 L2 if we can
find graphs G; and G, such that £; can distinguish between G; and G,, while £,
cannot distinguish between G; and G,.

Example 2 (Fletcher et al. [3, Proposition 11]). Consider the graphs Gs; and G, of
Figure 2. The expression e = (& o &) — (& U id) in N(-) can distinguish between G;
and G.: we have [[e]lg, = 0 and [e] g, # 0.

One way to determine whether £ can distinguish between graphs G; = (V1, 21, E1)
and Gy = (Vs, 22, Ep) is by effectively computing the set of all possible query results of
queries in £ when evaluated on both G; and G,. Let F C {di, ~, =, 7, N, —}. We write

Y(3,61,G2) = {(lelg:. [elg,) | e aquery in N(F)}

to denote the set of all query result-pairs of queries in N(F) when evaluated on G,
and G,. Observe that ([e]g,, [elg,) € (Vi X V1) X (V2 x V%) for every expression
in N(F). Hence, the set Y(F, G1, G.) is finite and ||X(F, G)|| < 2IMI*1V20* i the
worst case. We can adapt Algorithm BRUTEFORCE in a straightforward way to compute
Y(F, G1, G2). To determine whether N (&) can distinguish between G; and G, we do
not have to fully compute Y(F, G1, G2): we can stop as soon as we find a pair (Ry,Ry)
with Ry = @ and R, # 0.

2.3 Implementation of the BRUTEFORCE Algorithm

Implementing the BRUTEFORCE Algorithm is rather straightforward. From the descrip-
tion of the algorithm, it already follows that the search space explored by the algorithm
can quickly become extremely large, even when operating on very small graphs. To
make the tool feasible for practical usages, we have looked for a practical implementa-
tion in which each facet of the algorithm is implemented as efficient as possible. Below,

Algorithm BRUTEFORCE(G = (V, 2, E), F):

1:
2:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:

L,X:=[]0
ID:={(m,m) | me YV}

: #(Add all atomic expressions to £).

. App(L, X, 0, 0)

: App(L, X, id, ID)

: App(L, X, di, {(m,n) |[mne V Am+n})ifdieF

for ¢ € X do
App(L, X, ¢, E(¢))
App(L, X, €7, {{n,m) | (m,n) e E{Q)})if ~ € F

: end for

#(Add non-atomic expressions to £).

i:=0
while i < ||£]| do
(R e) == L][i]

ADD(L, X, eo0e,RoR)
App(L, X, mile], {(m,m) |meR;})if r € F
App(L, X, mle], {{m,m) |meR})if 1 € F
ApD(L, X, mi[e], ID—{(m,m) | meR}})if r e F
ApD(L, X, myle], ID—{{(m,m) | meR|,})if T € F
for (S,q) € £[0...i) do
App(L, X, e0q,R0S)
App(L, X,qoe,SoR)
App(L, X, eUq, RUYS)
App(L, X, eng, RNS)if ne T
App(L,X,e—q,R-S)if —e€ F
App(L,X,q—e,S-R)if — € F
end for
ir=i+1
end while
return S

Algorithm App(L, X, e, R):
if R ¢ X then
L:=L+][(R, e)]
X :=XU{R}
end if

Figure 1: Return X(&, G) with F € {di, ~, =, 7, N, —}.

Figure 2: The 3-clique graph Gs; and the bow-tie graph G...

we shall discuss the details and considerations that went into our efforts to imple-
ment the BRUTEFORCE Algorithm in C++. We have made the following basic decisions

concerning the algorithm: the list £ is implemented as an std: : vector of (relation,
expression)-pairs, and the set M is implemented as an std: : set of relation-keys.

The most important aspect of the implementation are the binary relations and
of the relation algebra operations on binary relations. We notice that the relation
implementation must meet the following criteria:

1. Relation algebra operations on relations must be highly efficient.

2. Relations must have a small memory footprint (to accommodate storing many
of them).

3. Relations must have a strict ordering defined on them (to allow their usage in
std: :set).

We have also found that the cost of memory allocation and deallocation contribute
significantly to the overall running time of the implementation.

We consider two distinct implementations, each with their own benefits and weak-
nesses. First, in Section 3, we describe the general-purpose array-based edge-list
implementation. Then, in Section 4,we describe specialized matrix-based implementa-
tions that can only deal with graphs of up to 16 nodes.

3 Binary relations as arrays

In our setting, we can simply represent nodes by integers and binary relations by arrays
of integer-pairs. In such a relation-array, we enforce that the node pairs are sorted on
lexicographical order and that there are no duplicate node pairs and that the. Hence,
if R = [{v1, w1), ..., (V=) W=|)] is a relation-array and (v;, w;), (v;, w;) € R with
1 < i < j < n, then we enforce that v; < vj or (v; = v;) A (W; < wj).

These structural properties will aid in implementing the necessary operators on
binary relations efficiently. The union, intersection, and difference operators (U, N, and
—) can be implemented straightforward by using the highly efficient standard library
algorithms std: :set_union, std: :set_intersect, and std: :set_difference, re-
spectively.* We refer to Table 1 for details. Hence, we only need to provide efficient
implementations for the composition and the projections. Both projection operators
are straightforward to implement.

Operator: Implementation: Worst-case complexity:
Running time: Buffer size:
AUB std::set_union O(a+Db) k
ANB std::set_intersect | O(a+Db) k
A-B std::set_difference | O(a+b) k

Table 1: Details on each operator in the array-implementation of binary relations. In

this table, a = ||Al|, b = ||B||, and k = ||R|| with R the output list.

3The std::set is usually implemented using binary search trees. Instead, one can also use
std: :unordered_set, which is usually implemented using hash tables, but this set-implementation had
difficulties dealing with large amounts of keys.

4These standard C++ algorithms are part of the standard library and are defined in <algorithm>.

3.1 Computing compositions

Next, we look at the composition of two lists, A o B. If we have arbitrary lists of node
pairs, then the composition can be computed using a simple nested loop algorithm. We
refer to Figure 3 for details.

Algorithm Compose-NEsTEDLoops(A, B):

1. L= []

2: for (m,n) € A do

3. for {(v,w) € B do

4 if n = v then

5: L =L+ [(mw)]
6 end if

7 end for

8: end for

9: SorT(L, 0)

—_

0: UN1QUE(L, 0)

Figure 3: Return A o B as a sorted list of edges.

The Compose-NEsTEDLoops Algorithm is very inefficient. Fortunately, we can
easily use the lexicographical ordering of relation-arrays to our advantage. Let A =
[(m1,n1),...,(my4), na))] be arelation-array, let m be anode, and let (m;, n;), (m;, n;),
1 <i < j < ||All, be the first and the last node pairs in A with m; = m; = m. Due to the
lexicographical ordering on B, the first node pair (n, w) € B withny < n,i < k < jwill
be found after the last node pair (n’, w’) € B with n’ < ny. Using these observations
leads to Algorithm ComPOSE-PARTIALMERGE, see Figure 4 for details.

Algorithm CompOSE-PARTIALMERGE(A, B):
1 L,i:= [], 0
2: while i < ||A|| do
3 m,j k= Al 0, |I£]|
4: #(Produce pairs (m, w) with w € Bl,).
5. whilei < ||A|| and A; = mdo
6: n:= A[i]z
7
8
9

#(Search the position of the first pair (v, w) € B with n < v).
Jj := sEarcH(B, j, || B||, n)
: #(Produce pairs (m, w) with (m,n) € A, (v, w) € Bl,, and n = v).
10: while j < ||B|| and B[j]; = n do

11: L,j:=L+[(mB[j])],j+1
12: end while
13: i=i+1

14: end while
15: end while
16: return £

Figure 4: Return A o B as a sorted list of edges. For brevity, we have omitted the
necessary sort and deduplication steps.

3.2 Other implementation details

In Algorithm ComMPOSE-PARTIALMERGE, we have not specified how to search for the
first node pair (n, w) € B with ny < n,i < k < j. We can use basic well-known search
techniques:

Linear search. We can simply traverse B for every node m. In the worst case, this
is optimal. If, however, most pairs in B do not join with pairs in A, then the
traversal will do unnecessary work.

Binary search. Due to the lexicographical ordering, we can also use binary search
to search in B. On the one hand, binary search will be fast if only a few pairs in
B join with pairs in A: in this case, binary search will skip most of B. On the
other hand, if most pairs in B join with pairs in A, then straightforward linear
traversal will be much more efficient.

Exponential search. To combine the benefits of linear search and binary search, we
can also use exponential search [1], as detailed in Figure 5, which will perform
acceptable in all cases.

Table 2 lists the complexity of these three search algorithms.

Algorithm SEARCH-ExPONENTIAL(L, lo, hi, n):

1: lo, step, hi:= j, 1, || L||

2: while lo + step < hiand L[lo + step]; < ndo
3: step:=2- step
4
5

: end while
: return SEARCH-BINARY(L, lo + (step + 2), min(lo + step, hi))

Figure 5: Algorithm SEARCH-EXPONENTIAL returns the index of the first pair (v, w) €
L[lo : hi] with n < v, returns hi if no such pair is found.

Algorithm: Complexity:
SEARCH-LINEAR(L, lo, hi, n) o(k)
SEARCH-BINARY(L, lo, hi, n) O(log(hi — lo))

SEARCH-EXPONENTIAL(L, lo, hi,n) ©(log(k))

Table 2: Complexity of the search algorithms that returns the index lo + k of the first
element in L[lo, . . ., hi) equal-or-greater than the specified value n.

Using either linear search or exponential search, we have the following (when we
omit the necessary sort and deduplication steps):

Theorem 1. Algorithm CoMPOSE-PARTIALMERGE computes A o B in O(a + a; X b), in
which a = ||A||, a; = ||Al1ll, and b = || B]|.

We notice that other join algorithms have better theoretical complexities: in this
setting, however, we usually deal with small relations for which this algorithm suffices.

In our implementation we have made several low-level decisions which each
increased performance of the relation-arrays significantly. These decisions are:

1. We represent relation-arrays by fixed-size dynamic arrays (a struct holding a
pair of pointers to the begin and end of the array in heap memory) instead
of std: :vector, as fixed-size dynamic arrays have a slightly smaller memory
footprint.

2. To reduce memory allocations and deallocations, all algorithms use a shared
fixed-size buffer and use this buffer to construct all intermediate query results
in. After a query result is constructed in this buffer, at which point we know the
exact size, we copy the query result to a freshly created relation array of exactly
the right size.

3. We can define the strict ordering on relation-arrays A < B by using the lexico-
graphical comparison of lists A < B, of which an efficient implementation is
provided by std: : lexicographical_compare. As relation-array comparisons
are very common due to the usage of std: : set, we have opted for the following
strict-ordering instead:

A < Bif (Al < [IB]) or (IlAIl = [Bl A A < B).

This ordering has the benefit that most relation-array comparisons can be per-
formed without looking up the content of the arrays (which would involve
following an additional pointer).

4. We do not store node pairs of x-bit integer nodes as std: :pair<X, X>, but
instead we encode node pairs as a single 2x-bit value of which the x most
significant bits represent the first node, and the remaining bits represent the
second node. E.g. node pairs of 8-bit nodes are stored in single std: :uint16_t
values. This will make node pair comparisons much faster. (Notice that node
pair comparisons play a crucial role in almost all operations).

4 Binary relations as matrices

Assume we have at most n nodes. It is well known that in this setting a set of node
pairs can be represented by a boolean n X n matrix. We only introduce the minimum
notation and background necessary. For more details on matrices and their role
in graph representations and graph algorithms, we refer to standard textbooks [2].
Consider the following n X n matrix:

ml,l ml’z e an

mz’l mz’z e mz’n
m =

mn’l mn’g e My n

>

We, again, represent nodes by unique integers. Let i and j be nodes, 1 < i,j < n. We
say that the node pair (i, j) is in the binary relation represented by m ({i, j) € m) if
and only if m; ; is True.

Next, we take a look at how to implement the relation algebra operators we
support. First, in Sections 4.1, we present these operators at an abstract level (as
matrix operations). Then, in Section 4.2, we look at the details on how to efficiently
implement these operators for 64-bit 8 X 8 matrices using MMX/SSE instructions. Next,
in Section 4.3, we briefly look at how to efficiently implement these operators for 64-bit

8 X 8 matrices using 128-bit SSE2 instructions. Finally, in Section 4.4, we look at the
details on how to efficiently implement these operators for 256-bit 16 X 16 matrices
using AVX2 instructions.

4.1 Relation algebra operators on matrices

We look at how to perform each relation operator on matrices.

Union, intersection, and difference. Let u and v be n X n matrices. If we assume
that these matrices are stored as a consecutive sequence of n?-bits, then the union
u U v can be computed by taking the bitwise-or of u and v and the intersection u N'v
can be computed by taking the bitwise-and of u and v.

For the difference u — v, we first need the complement of v. If c is the complement
of v, then (i, j) € cif and only if (i, j) ¢ v. The complement c can be computed by
taking the bitwise-not of c. Them, we simply compute u N ¢ by taking the bitwise-and
of uand c.

Converse. On matrices, the converse operator can be evaluated using the standard
matrix transpose operator. Let m be a n X n matrix. The transpose m' is defined by

-
My M2 ... My My Mzp ... Mpy
mz1 M2z ... Mgy My M2z ... My
Mp1 Mp2 ... Mgy My, M2p ... Mpp

The equivalence of the converse operator and transposition is straightforward to see.
We have (i, j) € m~! if and only if (j, i) € m if and only if (i, /) € m".

Projections. Let m be a n X n matrix. We have

miy mi o miy P1 1 1

My M22 ... Mgy 1L pp ... 1
7T1[. . . . =1

Mu1 Mupo ... Mpy 1L L ... pPm

in which 1L = Falseandp; =(my 1 VmizV---Vmy,), 1 <i<n Wecan compute
m[m] by computing 7 [mT].

Composition. On matrices, the composition operator can be evaluated using the
standard Boolean matrix multiplication operator. The Boolean matrix multiplication

w = u - v is defined by

up1 U2 ... Upnp Vi,1 V1,2 ... Vin
uz1 Uz2 ... Uznp V2,1 V2,2 ... Voon
un,l Un72 e un,n Vn,l Vn,2 e Vn,n
Vick<n W1k AVe1) Vick<n Wik AVi2) oo Vick<n (Unk AVin)
Vick<n Uz e AV Vick<n Uak AViz) oo Vick<n (Uzk A Vin)
. . . 9
Vick<n Wnk AVe1) Vick<n WUnk AVi2) oo Vick<n (Unk AVin)

with Wi j = Vicecn Uik A Vi) = (Uit A Vi) V(U2 Ava) Voo (Ui A Vaj)
for every 1 < i,j < n. The relationship between composition and Boolean matrix
multiplication is straightforward. We have (i, j) € (u o v) if and only if there exists
a k such that (i, k) € u and (k, j) € v. Observe that k € {1,...,n}. Hence, we have
(i,j) € (uov)ifand only if ((i, 1) € u) A ({1,j) € v), or ({i,2) € u) A({2,j) € v), ..., or
((i,n) € u) A ({n, j) € v) holds. This condition is equivalent to the condition expressed
by w; ;. We conclude (i, j) € (u o v) if and only if (i, j) € w.

4.2 The 8-node MMX/SSE implementation

Our first specialized matrix implementation supports graphs with up to 8 nodes
and provides high-performance implementations of the operations of Section 4.1
using MMX/SSE instructions. Instead of low-level assembly instructions, we shall
use intrinsics to specify specific instructions.’ Before we discuss the details of each
operator, we first look at how we represent 8 X 8 matrices in memory. Let

ml,l ml’z e ml,g

mz,l mz’z e mz’g
m =

mg’l mg’z e mg’g

be a 8 X 8 matrix. In memory, this matrix is represented by a 8-byte (64-bit) sequence
with the following layout:

1 2 8 9 10 16 57 58 64
—— e Ve N N — —— —_—
mp; Mp2 ... Mg M1 Mz2 ... Mg ... Mg Mg2 ... Mgg .
1st byte 2nd byte 8th byte

Next, we look at how to implement the converse, first projection, and composition
efficiently (Section 4.1 already provided efficient implementations for the set operators).

Converse. We will compute the transpose of an 8 X 8 matrix by extracting each
column of the matrix efficiently. To do so, we need two MMX/SSE instructions. First,
the SSE instruction

int _mm_movemask_pi8(__m64 a)

5For details on each of the intrinsics used in this document. we refer to the Intel Intrinsics Guide at
https://software.intel.com/sites/landingpage/IntrinsicsGuide.

10

interprets the 64-bit value a as a sequence of eight bytes, and returns the most signifi-
cant bit in each byte. Interpreted in matrix terms, we have

a1,1 a2 ... a1g

) 32’1 32’2 e 32’3
_mm_movemask_pi8(] . .) . PD=lais azs ... asggs]

ag,l 38’2 e ag’g

Hence, a single call of _mm_movemask_pi8 will return the last column of matrix a.
Next, the MMX instruction

__m64 _mm_slli_pil6(__m64 a, int imm8)

interprets the 64-bit value a as a sequence of four 16-bit integers, and shifts the bits in
each integer imm8 positions to the left (filling with zeros). For our usage, we will only
use this instruction with imm8 = 1. Interpreted in matrix terms, we have

a;1 a;2 ... ag 1 a1 ... aAn7

a1 a2 ... a3 a,g A2 ... A7
_mm_slli_pi1 6(a1 asz2 ... asg , 1) — 1 az1 ... a7 ,

38,1 ag’z e ag,g 37’8 38,1 e 38,7

in which L = False. Hence, a single call of _mm_s11i_pi16 will shift every column in
the matrix to the right (for our purpose, the newly created first column can be ignored
entirely).®

Using these two MMX/SSE instructions, the transpose of an 8 X 8 matrix m can be
constructed by Algorithm MATRIXTRANSPOSE-8 of Figure 6. This algorithm assumes
that m is already stored in a variable of type __m64. If this is not the case, then the
MMX instruction

__m64 _mm_cvtsi64_m64(__int64 a)
can be used to load m in a variable of type __m64.

Algorithm MATRIXTRANSPOSE-8(m):

1: r:=10,0,0,0,0,0,0,0] #(r is a sequence of eight bytes).
2: for i := 7 down to 0 do

3. r[i] := _mm_movemask_epi8(m) #(Obtain and set the ith row of b").
4 m:=_mm_slli_epi16(m,1)

5. end for

6: return r

Figure 6: Return m', the converse of the binary relation m.

First projection. Let m be a 8 X 8 matrix. The ith row [m;; m;2 ... m;gs],
1 < i < 8, is stored as the ith byte of m. Hence, we have m[i] # 0 if and only if
(i, i) € m[m], and we simply set the corresponding bit accordingly.

The x86 and x86-64 architectures are Little-Endian. Hence, shifting the bits in a 16-bit integer to the
left, will shift bits to higher addresses in memory (‘to the right’ in memory).

11

Composition. We will compute the Boolean matrix product of two 8 X 8 matrices
one entire row at a time. To do so, we will need four additional MMX instructions.
First, the MMX instruction

__m64 _mm_setzero_si64(void)

will return a 64-bit value with all bits set to zero. Interpreted in matrix terms, we have

1 L ... 1L

4 L ... L
_mm_setzero_si64() =

1 L ... 1L

in which L = False. Second, the MMX instruction
__m64 _mm_set1_pi8(char a)

will repeat a byte eight times to make a 64-bit value. Interpreted in matrix terms, we
have

a; dp ... 4ag

a; dp ... 4ag
_ma_set1_pi8([a; a; ... ag]) =

a; dp ... dag

Third, the MMX instruction

__m64 _m_pand(__m64 a mé64 b)

pp—

returns the bitwise-and of the two arguments. Interpreted in matrix terms, we have

a1,1 a2 ... A8 b1,1 b1,2 ce bl,8
a1 a2 ... A28 bz,l b2,2 e bz,s
_m_pand(| . .]) D=
ag,1 ag2 ... Ags b8,l bs,z ce b8,8
a; A bl,l a A bl’g - TR -RAY bl’g
a2’1 A b2’1 ag’g A bg’g e azyg A bgyg
51 51 s s s s s
ag1 Abs1 agaAbsp ag,s A bgg

Finally, the MMX instruction
__m64 _mm_cmpeq_pi8(__m64 a, __m64 b)

will interpret the 64-bit values a and b as sequences of eight bytes, compare corre-
sponding bytes in these sequences, and return a sequence of eight bytes holding the
result. Let 1 < i < 8. In the result, the ith byte is set to 255 (all bits set) if the ith bytes
in a and b are equivalent, and the ith byte is set to 0 (no bits set) if the ith bytes in a

12

and b are not equivalent. Interpreted in matrix terms, we have

a1,1 a2 ... A1 b1,1 b1,2 cee bl,8
. a1 az2 ... A28 b2,1 bz,z cee bz,s
_mm_cmpeq_pi8(| . . . N . =
ag1 ag2 ... A4gs b8,1 bs,z cee bs,s
rn n r
rp 12 r2
rs rg rg
withr; = Trueifand only if [a;1 a;2 ... a;s]=[bi1 biz ... bisgl

Using these MMX instructions, the composition of 8 X8 matrices can be constructed
by Algorithm MaTrRIxMurTIPLY-8 Of Figure 7. As with Algorithm MATRIXTRANSPOSE-8,
Algorithm MATRIXMULTIPLY-8 assumes that the input, a and b, are already stored in a
variable of type __m64. If this is not the case, then _mm_cvtsi64_m64(__int64) can
be used accordingly.

Algorithm MATRIXMULTIPLY-8(a, b):

1: r:=1[0,0,0,0,0,0,0,0] #(r is a sequence of eight bytes).
2 t:=h'

3: z:= _mm_set1_pi8(0) #(Matrix with all values set to False).
4: fori:=0upto7do

5 i:=_mm_setl1_pi8(ith byte in a) #(Every row is the ith row in a).

6: #(Next, we will compute the entire ith row of r = a - b).
7: 0= _m_pand(i,t) #(First, perform all A-operations necessary).
8: i:= _mm_cmpeq_pi8(i,z) #(Next, perform all V-operations).

9: #(The valueijg, 1 < j < 8,is True if and only if (a - b); ; is False).

10: r[i] := ~(_mm_movemask_epi8(i)) #(Bitwise operators).
11: end for

12: return r

Figure 7: Return a - b, the composition of the binary relations a and b.

4.3 The 8-node SSE2 implementation

Certain compilers do not support the 64-bit __m64 data type or the MMX/SSE in-
structions used in Algorithms MATRIXTRANSPOSE-8 and MATRIXMULTIPLY-8 when
compiling 64-bit binaries. In these cases, it is straightforward to port the code above
to use 128-bit SSE2 instructions instead. See Table 3 for details.

4.4 The 16-node AVX2 implementation

Our second specialized matrix implementation supports graphs with up to 16 nodes
and provides high-performance implementations of the operations of Section 4.1 using

13

Original instruction: ‘ 128-bit SSE2 instruction:

_mm_movemask_pi8 int _mm_movemask_epi8(__m128i a)
_mm_s1li_pil6 __m128i _mm_slli_epil16(__m128i a, int imm8)
_mm_cvtsi64_m64 __m128i _mm_cvtsi64_si128(__int64 a)
_mm_set1_pi8 __m128i _mm_set1_epi8 (char a)

_m_pand __m128i _mm_and_si128 (__m128i a, __m128i b)
_mm_cmpeq_pi __m1281i _mm_cmpeq_epi8 (__m128i a, __m128i b)

Table 3: Mapping between 64-bit MMX/SSE instructions used in Algo-
rithms MATRIXTRANSPOSE-8 and MATRIXMULTIPLY-8 and the corresponding
128-bit SSE2 instructions.

AVX2 instructions. Before we discuss the details of each operator, we first look at how
we represent 16 X 16 matrices in memory. Let

my 1 My ... Mg my9 my10 ... Mye

ma, 1 My ... Mg ma.9 mzi10 ... M2i6
m=

Mie,1 Myg2 ... Migg Mig9 Mig10 ... Mig16

be a 16 X 16 matrix. In memory, this matrix is represented by a 32-byte (256-bit)
sequence with the following layout:

1 2 8 9 10 16 113 127 128
—— —— = —_ —_— —_
ml,l ml’z e ml’g mz’l mz,z e mz,g e m16,1 m16,2 e m16,8
1st byte 2nd byte 16th byte
129 130 136 137 138 144 249 250 256

— —~ — —~— —
My9 My 10 ... M1 16 M29 My 10 ... M2 16 ... M169 Mi6,10 - .. Mi6,16

17th byte 18th byte 32th byte

Observe that the 256-bit sequence consisting of two 128-bit parts, each encoding
eight columns. Next, we look at how to implement the converse, first projection, and
composition efficiently (Section 4.1 already provided efficient implementations for the
set operators and the second projection).

Converse. We will compute the transpose of a 16 X 16 matrix in a similar way as how
we computed the transpose of a 8 X 8 matrix. To do so, we need two AVX2 instructions.
First, the instruction

int _mm256_movemask_epi8(__m256i a)

operates similar to _movemask_pi8: it interprets the 256-bit value a as an array of 32
bytes, and returns the most significant bit in each byte. Interpreted in matrix terms,

14

we have

a1 a2 ... a6
. a1 a2 ... A216
_mm256_movemask_epi8(| b=
a16,1 A16,2 --- A16,16
[31,8 as8 ... a168 4aA1,16 4A216 --- a16,16 1.

Observe that only due to the memory layout we use, the most significant bits in the
first 16 bytes represents the 8-th column of the matrix, and the most significant bit in
the last 16 bytes represents the 16-th column of the matrix. Hence, due to the memory
layout we use, a single call of _mm256_movemask_epi8 will return the 8th and 16th
column of the matrix a. Next, the instruction

__m2561i _mm256_s11i_epi16(__m256i a, int imm8)

extends _mm_s11i_pi16 to operate on sixteen 16-bit integers in stead of four. Using
these two AVX2 instructions, the transpose of an 16 X 16 matrix m can be constructed
by Algorithm MATRIXTRANSPOSE-16 of Figure 8. Algorithm MATRIXTRANSPOSE-16
assumes that m is already stored in a variable of type __m2561i.

Algorithm MATRIXTRANSPOSE-16(m):

1: r:=[0,0,...,0] #(r is a sequence of thirty-two bytes).
2: fori:=7 down to 0 do

3. r:=_mm256_movemask_epi8(m) #(Obtain the ith and (i+8)th row of b").
4 m:=_mm256_s1li_epil6(m,1)

5. r[i], r[i + 16] := 1st byte in r, 2nd byte in r

6: r[i+ 8], r[i + 24] := 3th byte in r, 4th byte in r

7: end for
8: return r

Figure 8: Return m', the converse of the binary relation m.

First projection. Let m be a 16 X 16 matrix. The ithrow [m;; m; 2 ... m; 6],
1 < i < 16, is stored in two parts. The part [m; 1 m;2 ... m;g]isstored in the
ith byte of m and the part [m; 9 m;2 ... m;c]is stored in the (i+16)th byte of
m. Hence, (m[i] # 0) V (m[i + 16] # 0) if and only if (i, i) € m;[m].

To reduce the amount of work, we can construct a 16-byte (128-bit) sequence S
consisting of the bitwise-or of the first 16-bytes and the last 16-bytes in m. With this
sequence, we have (S[i] # 0) if and only if (i, i) € m;[m], and we can simply set the
corresponding bit accordingly. We construct S using Algorithm ORLowHIGH-16 of
Figure 9.

Composition. We will compute the Boolean matrix product of two 16 X 16 matrices
one entire row at a time using Alorithm MATRIXTRANSPOSE-16 of Figure 10. This Al-
gorithm is based directly on Algorithm MATRIXMULTIPLY-8, while taking into account
the necessary changes due to the memory layout of 16 X 16 matrices.

15

Algorithm ORLowHIGH-16(m):

1: low:= _mm256_extractf128_si256(m,0) #(Return first 128-bit half of m).
2: high := _mm256_extractf128_si256(m,1) #(Return second 128-bit half of m).
3: return _mm_or_si128(low, high) #(Bitwise-or of the two halves).

Figure 9: Return the sequence S obtained by the bitwise-or of the first 16-bytes and
the last 16-bytes in m.

Algorithm MATRIXMULTIPLY-16(a, b):

1: r:=[0,0,...,0] #(r is a sequence of thirty-two bytes).
2 t:=b'

3. z:= _mm256_setzero_si256(0) #(Matrix with all values set to False).
4: for i:=0up to 15 do

5. #(Make a matrix in which every row is the ith row in b').

6 low := _mm_set1_epi8(ith byte in a) #(Set the first eight columns).
7: high:= _mm_set1_epi8((i+16)th byte in a) #(Set the last eight columns).
8 i:=_mm256_set_m128i(high,low) #(Combine first and last eight columns).

9: #(Next, we will compute the entire ith row of r = a - b).

10: i:=_mm256_and_si256(i,t)

11: i:= _mm256_cmpeq_epi8(i,z)

12: z:= _mm256_movemask_epi8(i)

13: r[i] := =(1st byte in z) V =(3rd byte in z) #(Bitwise operators).
14: r[i + 16] := —(2nd byte in z) V —(4th byte in z) #(Bitwise operators).
15: end for

16: return r

Figure 10: Return a - b, the composition of the binary relations a and b.

5 Relation-arrays versus relation-matrices

Usually, a matrix representation is space-efficient if the node pair set is dense (has close
to the maximum of n? pairs), but not when the node pair set is sparse (in which case a
relation-array implementation is more space-efficient). For small graphs with only a
few nodes, this rule of thumb is misleading, however. If we have at most 8 nodes, then
we can store any binary relation over these nodes already in a 82 = 64-bit (8-byte)
value. Likewise, if we have at most 16 nodes, then we can store any binary relation
over these nodes already in a 167 = 256-bit (32-byte) value.

Compare this to the relation-array implementation of Section 3: independent of
the number of edges the relation-arrays uses storage for at least two pointers, which,
on a 64-bit platform, costs 2 - 64 = 128-bit of storage.” Hence, for very small graphs
(at most 8 nodes), the Boolean 8 X 8 matrix implementation is always smaller, and for
small graphs (at most 16 nodes), the Boolean 16 X 16 matrix implementation is smaller
whenever the binary relation holds at least a few node pairs (eight node pairs if we
choose the 8-bit nodes).

We refer to Table 4 for an overview.

"This is a lower bound, as the process of dynamic memory allocation can have additional storage
overheads.

16

Max. num. nodes: | Implementation: | Memory Requirements (bytes)
Base: Per edge: Total:

8 MMX/SSE 8 8

16 AVX2 32 32

28 = 256 Array 167 |2 16" + 2¢

216 = 65536 Array 16 16" + 4e

2% = 4294967296 | Array 167 |8 16" + 8e

Table 4: Details on each binary relation implementation. In this table, e represents
the number of node pairs in the binary relation, and " indicates that the size depends
on the size of pointers on the platform (we have assumed a 64-bit architecture with

8-byte pointers).

References

[1] Jon Louis Bentley and Andrew Chi-Chih Yao. “An almost optimal algorithm for
unbounded searching”. In: Information Processing Letters 5.3 (1976), pp. 82-87.

DoI: 10.1016/0020-0190(76)90071-5.

[2] Thomas H. Cormen et al. Introduction to Algorithms. 3rd. The MIT Press, 2009.

[3] George H. L. Fletcher et al. “Relative Expressive Power of Navigational Querying
on Graphs”. In: Proceedings of the 14th International Conference on Database Theory.
ACM, 2011, pp. 197-207. po1: 10.1145/1938551.1938578.

[4] Jelle Hellings. “On Tarski’s Relation Algebra: querying trees and chains and the
semi-join algebra”. PhD thesis. Hasselt University and transnational University

of Limburg, 2018.

17

