
README of the stab-forest source code release

Jelle Hellings

July 12, 2020

1 Introduction

This document describes the licensing details, content of the package, the envi-
ronment in which we have tested the software, documentation on how to build
the software, documentation on how to use the software, documentation on how
to prepare the datasets, and documentation on all known issues.

2 Licensing details

The software package does not rely on other software packages to build and/or
run (except for the compiler and the standard language library). The software
written for this project is free to use under the terms of the well-known 2-clause
BSD license:

Copyright (c) 2017 Jelle Hellings.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY JELLE HELLINGS ‘‘AS IS’’ AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3 Content of the package

The root directory contains license details, this readme file, and the following
directories:

1



source Contains the main stab-forest source code, the source code for the ex-
periments, and the source code of supporting C++ tools. This directory
contains the following files:

algorithm.hpp supporting header file containing a three-
way merge algorithm.

block_list.hpp the block-list data structure, used inter-
nally by the stab-forest.

interval.hpp the interval data type used to represent
events together with the necessary com-
parison and predicate objects.

raw_array.hpp a raw uninitialized array, used internally
by the stab-forest.

stab_forest.hpp the stab-forest data structure together
with stab and multi-stab functionality.

temporal_join.hpp the temporal join algorithms (sweep-join
and skip-join).

dataset.hpp supporting header file containing functions
for reading dataset files.

measure_join.hpp supporting header file for measuring the
duration of temporal joins.

measure_insert.cpp the ‘constructing stab-forests’ experiment.
measure_jump.cpp the ‘the threshold constant’ experiment.
measure_part_join.cpp the ‘temporal joins’ experiment.
measure_window.cpp the ‘multi-window-queries and temporal

joins’ experiment.
min_max.cpp a dataset analysis tool to find the events

with minimal and maximal duration.
tool_split.cpp a dataset split tool to select a fragment of

a dataset and split this fragment in two
equal parts.

script Contains the Java-programs that are used to preprocess the datasets
used in the experiments.

measure Contains the raw measurements as published in the paper.

4 Environment

The software was developed and tested on a workstation with an Intel Core
i5-4670 CPU with 16GB of main memory and running Microsoft Windows 10,
version 1703 (build 15063.608). To the best of our knowledge, the software does
not rely on any system-specific behavior and should build and run without any
issues on any other modern platform.

4.1 Software requirements

1. A modern C++ compiler (with C++14 support).
To the best of our knowledge, the entire stab-forest source is fully C++14
standard-compliant. We have checked this using the appropriate compiler

2



switches (-pedantic for G++ and /permissive- for Visual C++). We
have tested with the following compilers:

(a) g++ (GCC) 8.1.0, part of the GNU Compiler Collection, via Cyg-
win64.

(b) Microsoft C/C++ Compiler Version 19.13.26132 for x64, part of Vi-
sual Studio 2017.

All programs used for the experiment measurements, as published in the
paper, have been compiled using Visual C++.

2. Java JDK and JRE (Java SE 7 or higher).
These are only used for tools that prepare the datasets. We have used
javac 1.8.0_144 and java version "1.8.0_144".

5 Build instructions

The programs do not depend on any special libraries or compiler options that
need setup prior to compilation. Below are the specific details for compiling
each file.

5.1 Building the C++ source using G++

For each program (each .cpp file), a simple direct invocation of the compiler
suffices:

g++ x.cpp -std=c++14 -o output_name

To enable optimizations and the use of system-specific instruction sets, we have
used the standard options -O3 -march=native.

5.2 Building the C++ source using Visual C++

To build the stab-forest source code using Visual C++, one needs to disable
warnings related to what Visual C++ deems unsafe parts of the standard C++
library (which includes basic algorithms such as std::copy). One does so by
setting the preprocessor definition _SCL_SECURE_NO_WARNINGS. One does so in
a Visual Studio project by going to the project properties and then navigat-
ing to Configuration Properties → C/C++ → Preprocessor → Preprocessor
Definitions → <edit...> and add _SCL_SECURE_NO_WARNINGS to the first text
field.

5.3 Building the script sources

The files ExtractFlightData.java and SelectFlightDays.java can be com-
piled using a standard java compiler:

javac ExtractFlightData.java

javac SelectFlightDays.java

3



6 Using the software

Each program is a simple command line tool, next follows brief documentation
on how to use each program:

6.1 measure_insert

measure_insert data_file step_size runs

Measure append performance of the stab-forest and compare it with other
data structures. The dataset is read from the file data_file and should be a
single set of events in the standard dataset format. The step_size parameter
controls the increments in which the measurement is (first step_size events are
appended, then 2·step_size, and so on). The measurements are repeated runs

times. The program writes measurements on the duration of each operation to
the standard output (in milliseconds).

6.2 measure_jump

measure_jump runs

Measure temporal join performance on gap datasets (that are generated by
the program). The measurements are repeated runs times. The program writes
measurements on the duration of each operation to the standard output (in
milliseconds).

6.3 measure_part_join

measure_part_join f_file s_file runs

Measure temporal join performance by joining the dataset in file f_file

with the first 10%, . . . , 100% of the dataset in file s_file. The second dataset
is sorted before use. It is assumed that the first dataset is already sorted lexi-
cographically on (start, end)-time order. The measurements are repeated runs

times. The program writes measurements on the duration of each operation to
the standard output (in milliseconds).

6.4 measure_window

measure_window flights_file filter_file runs

Measure temporal join performance on the flight dataset in file flight_file
by joining it with the dataset in file filter_file. It is assumed that the
second dataset is a sequence of non-overlapping intervals (as used by the multi-
window-query). The measurements are repeated runs times. The program
writes measurements on the duration of each operation to the standard output
(in milliseconds).

6.5 min_max

min_max data_file

Read a dataset from data_file and write to the standard output the details
of the events with minimal and maximal duration.

4



6.6 tool_split

tool_split data_file f_file s_file size

Split the dataset in file data_file into two files containing, each exactly
half of the events (randomly chosen). Write these resulting datasets to f_file

(sorted lexicographically on (start, end)-time order) and the second dataset to
s_file (randomly shuffled). If part is set, then before splitting the dataset, the
number of events is reduced to the specified size. Else, the entire dataset is used.
This tool is used to produce the input datasets for the measure_part_join

program.

6.7 ExtractFlightData

java ExtractFlightData file_1 ... file_N

Script to parse the ‘Airline On-Time Performance Data’ dataset (see Sec-
tion 7.1. This program accepts as parameters the file names the original CSV
files containing a flight dataset. The parser expects the fields YEAR, MONTH,
DAY_OF_MONTH, DEP_TIME, and AIR_TIME. The script filters out flights with in-
complete records, translates the date and time of departure to the start-time (in
minutes), and computes the end-time (in minutes) using the start-time and the
air-time. The resulting dataset is sorted lexicographically on (start, end)-time
order and written to standard output.

6.8 SelectFlightDays

java SelectFlightDays

Script that produces events that represent one-day periods in each month
(compatible with the dataset representation of the ‘Airline On-Time Perfor-
mance Data’ as produced by ExtractFlightData. The 7th day of every month
is selected, starting with July, 2007, and ending with June, 2017.

7 Obtaining and preparing the datasets

All C++ programs that process datasets expect the input to be a plain text file
with, on each line, a pair of whitespace separated positive integers indicating
start and end-time of an event. Depending on the tool, the dataset should be
sorted lexicographically on (start, end)-time order (See Section 6 for details).

7.1 Airline On-Time Performance Data

The raw CSV data files can be obtained from

https://www.transtats.bts.gov/Tables.asp?DB_ID=120,

where also the manual to the structure of these raw data files can be found.
We have only selected the fields named YEAR, MONTH, DAY_OF_MONTH, DEP_TIME,
and AIR_TIME. We observe that the departure information is in local time (of
the airport), and there does not seem to be readily available a way to look up

5



the associated time zone information. Consequently, we interpreted each time
as being in the same time zone (which should not matter for the purpose of
benchmarking). We have downloaded the 120 data files for the period July,
2007–June, 2017. Next, we have fed all these files to the ExtractFlightData

script, which outputs a dataset in the format expected by the various C++ pro-
grams.

Using the script SelectFlightDays, we have constructed the 120 windows
used in the ‘multi-window-queries and temporal joins’ experiment. Using the
tool_split program with size set to 2, 500, 000, we constructed the fragment
of this dataset used in the ‘temporal join’ experiment.

7.2 Civil Unrest Event Data

The raw data file ssp_public.csv can be obtained from

http://www.clinecenter.illinois.edu/data/event/speed/,

where along the raw data files the file ‘Codebook for Event Data File (PDF)’
can be found that documents the structure of the raw data files. We imported
this raw data file into Microsoft Excel 2016, removed all columns except for the
following four columns:

JUL_PSD Precise date of event start
JUL_PED Precise date of event end
JUL_EED Estimated date of event start
JUL_LED Estimated date of event end

These dates are in the format: days since January 1st, 1945.
We combined these two event tables by selecting the precise start or end

time when it is available, and otherwise selecting the estimated start or end
time. The resulting columns we have stored in a plain text file (in the dataset
format expected by the C++ programs).

Using the tool_split program with size not set, we constructed the frag-
ment of this dataset used in the ‘temporal join’ experiment.

8 Known issues

There are no checks on unsigned integer overflows while computing array sizes
and allocating arrays. Hence, when dealing with very large datasets, these
allocations will allocate wrongly sized objects which will lead to out-of-bound
behavior.

Although explicitly dealing with this issue by raising an exception is not
hard, it would clutter a portion of the forest-point merge code. Hence, for
clarity, we have chosen to not incorporate all necessary checks. To fix all issues,
small changes are necessary in the file stab_forest.hpp, where the following
fragment of the method void stab_forest::merge_forest_points needs to
be rewritten:

/* Compute the sizes of the new left-list and max-list. */

size_type dll_size = std::distance(dll_it, dll_ed_end(left));

size_type nll_size = std::distance(nll_it, nll_ed_end(left));

6



size_type ml_add_size = left.ll_size - (dll_size + nll_size);

/* Construct new raw arrays to hold the data. */

event_array raw_left_list(dll_size + 2 * nll_size);

event_array raw_max_list(right.nll_size + right.ll_size +

2 * ml_add_size);

7


